Dominating sets reconfiguration under token sliding - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2021

Dominating sets reconfiguration under token sliding

Résumé

Let $G$ be a graph and $D_{\sf s}$ and $D_{\sf t}$ be two dominating sets of $G$ of size $k$. Does there exist a sequence $\langle D_0 = D_{\sf s}, D_1, \ldots, D_{\ell-1}, D_\ell = D_{\sf t} \rangle$ of dominating sets of $G$ such that $D_{i+1}$ can be obtained from $D_i$ by replacing one vertex with one of its neighbors? In this paper, we investigate the complexity of this decision problem. We first prove that this problem is PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs. On the other hand, we prove that it can be solved in polynomial time on dually chordal graphs (a superclass of both trees and interval graphs) or cographs.
Fichier principal
Vignette du fichier
main.pdf (493.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02394839 , version 1 (06-12-2019)
hal-02394839 , version 2 (19-05-2021)

Identifiants

Citer

Marthe Bonamy, Paul Dorbec, Paul Ouvrard. Dominating sets reconfiguration under token sliding. Discrete Applied Mathematics, 2021, 301, pp.6-18. ⟨10.1016/j.dam.2021.05.014⟩. ⟨hal-02394839v2⟩
250 Consultations
387 Téléchargements

Altmetric

Partager

More