Article Dans Une Revue Discrete Applied Mathematics Année : 2021

Dominating sets reconfiguration under token sliding

Résumé

Let G be a graph and Ds and Dt be two dominating sets of G of size k. Does there exist a sequence D0=Ds,D1,,D1,D=Dt of dominating sets of G such that Di+1 can be obtained from Di by replacing one vertex with one of its neighbors? In this paper, we investigate the complexity of this decision problem. We first prove that this problem is PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs. On the other hand, we prove that it can be solved in polynomial time on dually chordal graphs (a superclass of both trees and interval graphs) or cographs.
Fichier principal
Vignette du fichier
main.pdf (493) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02394839 , version 1 (06-12-2019)
hal-02394839 , version 2 (19-05-2021)

Identifiants

Citer

Marthe Bonamy, Paul Dorbec, Paul Ouvrard. Dominating sets reconfiguration under token sliding. Discrete Applied Mathematics, 2021, 301, pp.6-18. ⟨10.1016/j.dam.2021.05.014⟩. ⟨hal-02394839v2⟩
285 Consultations
413 Téléchargements

Altmetric

Partager

More