A fast Fourier transform-based mesoscale field dislocation mechanics study of grain size effects and reversible plasticity in polycrystals
Résumé
A numerical implementation of a non-local polycrystal plasticity theory based on a mesoscale version of the field dislocation mechanics theory (MFDM) of Acharya and Roy (2006) is presented using small-strain elasto-viscoplastic fast Fourier transform-based (EVPFFT) algorithm developed by Lebensohn et al. (2012). In addition to considering plastic flow and hardening only due to SSDs (statistically stored dis-locations) as in the classic EVPFFT framework, the proposed method accounts for the evolution of GND (geometrically necessary dislocations) densities solving a hyperbolic-type partial differential equation, and GND effects on both plastic flow and hardening. This allows consideration of an enhanced strain-hardening law that includes the effect of the GND density tensor. The numerical implementation of a reduced version of the MFDM is presented in the framework of the FFT-based augmented Lagrangian procedure of Michel et al. (2001). A Finite Differences scheme combined with discrete Fourier transforms is applied to solve both incompatibility and equilibrium equations. The numerical procedure named MFDM-EVPFFT is used to perform full field simulations of polycrystal plasticity considering different grain sizes and their mechanical responses during monotonic tensile and reversible tension-compression tests. Using Voronoi tessellation and periodic boundary conditions , voxelized representative volume elements (RVEs) with different grain sizes are generated. With MFDM-EVPFFT, a Hall-Petch type scaling law is obtained in contrast with the conventional crystal plasticity EVPFFT. In the case of reversible plasticity, a stronger Bauschinger effect is observed with the MFDM-EVPFFT approach in comparison with conventional EVPFFT. The origin of these differences is analyzed in terms of heterogeneity, GND density and stress evolutions during the compression stage.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...