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Abstract

A numerical implementation of a non-local polycrystal plasticity theory based on a

mesoscale version of the field dislocation mechanics theory (MFDM) of Acharya and

Roy (2006) is presented using small-strain elasto-viscoplastic fast Fourier transform-

based (EVPFFT) algorithm developed by Lebensohn et al. (2012). In addition to

considering plastic flow and hardening only due to SSDs (statistically stored dis-

locations) as in the classic EVPFFT framework, the proposed method accounts

for the evolution of GND (geometrically necessary dislocations) densities solving a

hyperbolic-type partial differential equation, and GND effects on both plastic flow

and hardening. This allows consideration of an enhanced strain-hardening law that
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includes the effect of the GND density tensor. The numerical implementation of a

reduced version of the MFDM is presented in the framework of the FFT-based aug-

mented Lagrangian procedure of Michel et al. (2001). A Finite Differences scheme

combined with discrete Fourier transforms is applied to solve both incompatibility

and equilibrium equations. The numerical procedure named MFDM-EVPFFT is

used to perform full field simulations of polycrystal plasticity considering different

grain sizes and their mechanical responses during monotonic tensile and reversible

tension-compression tests. Using Voronoi tessellation and periodic boundary con-

ditions, voxelized representative volume elements (RVEs) with different grain sizes

are generated. With MFDM-EVPFFT, a Hall-Petch type scaling law is obtained in

contrast with the conventional crystal plasticity EVPFFT. In the case of reversible

plasticity, a stronger Bauschinger effect is observed with the MFDM-EVPFFT ap-

proach in comparison with conventional EVPFFT. The origin of these differences

is analyzed in terms of heterogeneity, GND density and stress evolutions during the

compression stage.

Keywords: Field dislocation mechanics; elastoviscoplastic; FFT; polycrystal; grain

size effects

1 Introduction

The response of polycrystalline metals to mechanical loading is notably dependent

on grain size, which is in turn dictated by thermo-mechanical processing (Hall, 1951;

Petch, 1953; Armstrong et al., 1962; Meyers and Chawla, 1984; Hansen, 1985, 2004).

The microstructure of metallic polycrystals induces additional hardening compared
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with single crystals due to the presence of grain boundaries (Hirth, 1972; Thompson

et al., 1973; Mecking, 1981). In polycrystals, different effects need to be considered

in a crystal plasticity formulation to predict the polycrystal’s behavior (Hirth, 1972;

Berveiller, 1978). First of all, plastic incompatibilities inducing long range internal

stresses (at the scale of the mean grain diameter) as well as inter-granular accom-

modation due to multiple slip in grains with different crystallographic orientations

should be considered. Such effects can be accounted for using mean-field approaches

like the elasto-plastic (EPSC) (Kröner, 1961; Budiansky and Wu, 1962; Hill, 1965;

Berveiller and Zaoui, 1979; Masson et al., 2000), visco-plastic (VPSC) (Molinari

et al., 1987; Lebensohn and Tomé, 1993) or elasto-viscoplastic (EVPSC) (Sabar

et al., 2002; Mercier and Molinari, 2009; Wang et al., 2010; Mareau and Berbenni,

2015) self-consistent schemes. However, consideration of the effect of grain size is

difficult in the context of such approaches. Different refined micromechanical mean

field models have been proposed to extend such self-consistent schemes, by consid-

ering intra-granular back-stresses with associated internal length scales related to

dislocation loops or slip bands constrained at grain boundaries (Berbenni et al.,

2008; Richeton et al., 2009; Collard et al., 2010) or due to GND densities (Ashby,

1970), see e.g. Pipard et al. (2009) and Taupin et al. (2010). Moreover, the effect

of neighboring grains, grain and grain boundary shapes and the presence of triple

junctions, all inducing non uniform intra-granular mechanical fields also need to be

accounted for. This can be achieved using full field CP-FEM (Mika and Dawson,

1998; Delaire et al., 2000; Barbe et al., 2001b,a) or EVPFFT (Lebensohn et al.,

2012; Suquet et al., 2012). However, such formulations are based on conventional

continuum crystal plasticity. Therefore, even though these methods are able to con-

sider plastic anisotropy owing to the grain’s crystallographic orientations and shapes,

they do not account for internal length scale effects or non local effects due to slip

gradients and dislocation pileups at grain boundaries. As a consequence, their main
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shortcoming is that the predicted microscopic and macroscopic field responses are

grain size independent.

A simple way of introducing size effects is to consider an explicit grain size depen-

dence in the constitutive equation at the level of grains or slip systems (Weng, 1983).

This method revealed to be efficient for considering grain size distribution effects on

the macroscopic flow stress of polycrystals (Berbenni et al., 2007; Lavergne et al.,

2013) but the size effect does not come from deformation gradients that exist at

more local scale reflecting the inhomogeneous nature of slip in the presence of grain

boundaries. These intra-granular spatial gradients of lattice orientation, e.g. lat-

tice curvatures, can be measured with Electron Back-Scatterred Diffraction (EBSD)

(Randle et al., 1996; Scheriau and Pippan, 2008; Beausir et al., 2009; Perrin et al.,

2010). Using the relationship between lattice curvature and the GND density tensor

(also called Nye tensor) given by Nye (1953) and later by Kröner (1958) or Kröner

(1981), GND densities in polycrystalline metals are nowadays commonly measured

using white beam micro-diffraction (Barabash et al., 2005) or using scanning elec-

tron microscopy equipped with two- or three-dimensional EBSD set up (Pantleon,

2008; Calcagnotto et al., 2010; Allain-Bonasso et al., 2012; Konijnenberg et al., 2015;

Jiang et al., 2015; Wallis et al., 2016).

Alternatively, Discrete Dislocation Dynamics (DDD) methods first developed by

Kubin et al. (1992) and later by Van der Giessen and Needleman (1995), Verdier

et al. (1998), Schwarz (1999) among others, are able to naturally account for internal

length and grain size effects considering discrete distributions of dislocation sources,

dislocation mobility, Peach-Koehler force (Peach and Koehler, 1950) on dislocation

line or segments and impenetrable grain or phase boundaries. For example, DDD

was used to study plasticity size effects on internal stresses in thin films (Espinosa

et al., 2005, 2006), micro-specimens (Kiener et al., 2010), grain size effects on the
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strengthening of polycrystals and Hall-Petch relationship (Biner and Morris, 2002;

Lefebvre et al., 2007; Balint et al., 2010; Jiang et al., 2019) and Bauschinger effect

(Nicola et al., 2006; Guruprasad et al., 2008; Balint et al., 2010; Jiang et al., 2019;

Waheed et al., 2017).

On the other hand, strain gradient plasticity continuum theories (Fleck and Hutchin-

son, 1993; Smyshlyaev and Fleck, 1996; Fleck and Hutchinson, 2001; Niordson and

Hutchinson, 2003; Gudmundson, 2004; Zeghadi et al., 2005; Gurtin and Anand,

2009; Niordson and Legarth, 2010; Fleck and Willis, 2009; Fleck et al., 2015; El-

Naaman et al., 2019) are also able to predict size dependent responses of polycrys-

tals like Hall-Petch behavior and reversible plasticity effects due to GNDs. These

theories integrate the Nye tensor characterizing the plastic deformation incompati-

bility and strain gradient effects in continuum crystal plasticity simulations. Strain

gradient plasticity theories were also coupled with crystal plasticity framework with

both SSDs and GNDs (Arsenlis and Parks, 1999, 2002; Acharya and Bassani, 2000;

Acharya and Beaudoin, 2000; Evers et al., 2002, 2004; Gurtin et al., 2007; Han et al.,

2005; Cordero et al., 2010, 2012; Niordson and Kysar, 2014; Wulfinghoff et al., 2015).

In between these two formulations (DDD and continuum phenomenological strain

gradient plasticity), another continuum approach, called phenomenological Meso-

scopic Field Dislocation Mechanics (here abbreviated MFDM throughout the pa-

per) has been proposed as an efficient method to model size-dependent plasticity

at the mesoscopic scale (Acharya and Roy, 2006; Acharya et al., 2006; Roy and

Acharya, 2006; Roy et al., 2007). This theory combines continuum dislocation me-

chanics theory and strain gradient crystal plasticity integrating the mobilities of

both GNDs and SSDs (Acharya, 2001, 2003; Roy and Acharya, 2005; Acharya and

Roy, 2006; Acharya, 2011). In this mesoscale theory, the constitutive equations for

strain-hardening models, slip rule for SSD and velocity of GND need to be specified
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phenomenologically. MFDM requires numerically solving the GND density trans-

port equation together with stress balance field equation, which allows predicting

the collective arrangement of GNDs and associated long range stresses. This was

done with finite elements in Roy and Acharya (2005, 2006) and in Varadhan et al.

(2006). Different size effects for single crystalline materials and multicrystalline thin

films have been predicted with the MFDM theory as reported in Roy and Acharya

(2006), Puri et al. (2009) and Puri et al. (2011). Grain size distribution and crystal-

lographic orientation effects in multicrystalline thin films were discussed in Puri and

Roy (2012). The role of GND density transport in ice single- or multi-crystals was

studied in Taupin et al. (2007) and Richeton et al. (2017). Varadhan et al. (2009)

and Gupta et al. (2017) coupled the MFDM equations with a dynamic strain aging

model in order to predict the strain-aging behaviors of single crystalline and poly-

crystalline Al alloys. More recently, dislocation pattern formation and associated

size effects was investigated by Arora and Acharya (2019) using finite deformation

MFDM. However, all these contributions reported simulations on polycrystals with

a small number of grains due to limiting CPU and memory requirements, needed to

solve MFDM equations with the finite element method.

FFT-based methods were initially developed and further applied to composite mate-

rials (Moulinec and Suquet, 1994, 1998; Eyre and Milton, 1999; Michel et al., 2001),

in which the heterogeneity is given by the spatial distribution of phases with dif-

ferent mechanical properties, and later adapted to polycrystals (Lebensohn, 2001),

where the heterogeneity is related to the spatial distribution of anisotropic crys-

tals with different orientations. This original CP-FFT implementation showed the

feasibility of efficiently solving the micromechanical behavior of complex polycrys-

talline unit cells. Subsequent numerical implementations of the FFT-based method

for polycrystals have been developed, for different constitutive descriptions of the be-

havior of each single crystal material point. The different constitutive regimes solved
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with FFT-based methods include: linear elasticity (Lebensohn, 2001; Brenner et al.,

2009); linear viscosity (Lebensohn et al., 2005); linear elasticity with eigenstrains or

thermoelasticity (Vinogradov and Milton, 2008; Anglin et al., 2014; Donegan and

Rollett, 2015; Eloh et al., 2019); rigid-viscoplasticity (Lebensohn, 2001; Lebensohn

et al., 2008, 2009; Lee et al., 2011; Rollett et al., 2010); small-strain crystal plastic-

ity elasto-viscoplasticity, i.e. CP-EVPFFT (Lebensohn et al., 2012; Grennerat et al.,

2012; Suquet et al., 2012); large-strain elasto-viscoplasticity (Eisenlohr et al., 2013;

Shanthraj et al., 2015; Kabel et al., 2016; Vidyasagar et al., 2018; Lucarini and

Segurado, 2019); dilatational plasticity (Lebensohn et al., 2011, 2013); lower-order

(Haouala et al., 2020) and higher-order (Lebensohn and Needleman, 2016) strain-

gradient crystal plasticity; curvature-driven plasticity (Upadhyay et al., 2016); trans-

formation plasticity (Richards et al., 2013; Otsuka et al., 2018); twinning (Mareau

and Daymond, 2016; Paramatmuni and Kanjarla, 2019), fatigue (Rovinelli et al.,

2017, 2018; Lucarini and Segurado, 2019); and quasi-brittle damage (Li et al., 2012;

Sharma et al., 2012). FFT-based methods were also applied to field dislocation me-

chanics (FDM) and field disclination mechanics (Brenner et al., 2014; Berbenni et al.,

2014; Djaka et al., 2015; Berbenni et al., 2016; Djaka et al., 2017; Berbenni and

Taupin, 2018), and discrete dislocation dynamics (DDD) problems (Bertin et al.,

2015; Graham et al., 2016; Bertin and Capolungo, 2018), providing the efficiency

needed for the implementation of these powerful and numerically-demanding formu-

lations.

In the case of polycrystalline materials, MFDM numerical implementation may take

advantage of FFT-based methods, which were already proven to be numerically effi-

cient for elasto-static FDM (Berbenni et al., 2014; Brenner et al., 2014; Djaka et al.,

2017) and for the resolution of the dislocation density transport equation at con-

stant applied GND velocity (Djaka et al., 2015) or together with stress equilibrium

for two-phase laminate structures (Djaka et al., 2019). Therefore, the objective of
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this paper is to develop an EVPFFT-based method for MFDM (named MFDM-

EVPFFT throughout the paper) for describing grain size effects on flow stress of

polycrystals at small strains due to both GNDs and SSDs and local GND disloca-

tion density evolution in the course of monotonic and reversible plastic deformation.

Specifically, we use MFDM-EVPFFT to study grain size effects on local mechanical

fields of FCC polycrystalline aggregates and the role of GND densities and mobilities

during a Bauschinger test. We aim at showing the effect of GND density pile ups as

predicted by MFDM-EVPFFT on stress heterogeneity during reversible loading.

Starting from the EVPFFT formulation developed by Lebensohn et al. (2012), here

designated as conventional CP-EVPFFT, MFDM-EVPFFT is based on a modified

expression of the Jacobian for the augmented Lagrangian scheme, a spectral resolu-

tion of the dislocation density transport equation required by the MFDM theory and

a hardening law accounting for GND density. A method based on finite differences

and discrete Fourier transforms to treat both lattice incompatibility and integral

Lippmann-Schwinger equations is used. The present work extends the preliminary

study of Djaka et al. (2019) for laminate microstructures to polycrystalline mi-

crostructures and investigates how grain size affects intra-granular micromechanical

fields like plastic strain, equivalent Von Mises stress and GND density. With that pur-

pose, the effect of average grain size of idealized polycrystals with 27 and 100 grains

and random orientations is studied. The tensile and tension-compression-tension

(cyclic) responses of these polycrystals are simulated with the MFDM-EVPFFT

model and are compared with CP-EVPFFT. The material parameters are the same

as the ones used in Djaka et al. (2019) for Al-based laminate microstructures. No spe-

cial interface conditions at grain boundaries are considered here, although such phys-

ically motivated interface conditions can be included in the MFDM theory (Acharya,

2007; Puri et al., 2011).
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The paper is organized as follows: in section 2, the MFDM constitutive equations are

summarized and the MFDM-EVPFFT formulation is presented. Section 3 presents

an application of MFDM-EVPFFT to polycrystalline aggregates with different grain

sizes and reversible (cyclic) plasticity to study the grain size dependence of the

Bauschinger effect.

2 Theory and numerical spectral implementation

2.1 Notation

A bold symbol denotes a tensor or a vector. The symmetric part of tensor A is

denoted Asym. Its skew-symmetric part is Askew. The tensor A ·B, with rectangular

Cartesian components AikBkj, results from the dot product of tensors A and B, and

A ⊗B is their tensorial product, with components AijBkl. The vector A ·V, with

rectangular Cartesian components AijVj, results from the dot product of tensor A

and vector V. The symbol “ : ” represents the trace inner product of the two second

order tensors A : B = AijBij, in rectangular Cartesian components, or the product

of a higher rank with a second rank tensor, e.g., A : B = AijklBkl. The cross product

of a second rank tensor A and a vector V, the div and curl operations for second

rank tensors are defined row by row, in analogy with the vectorial case. For any base

vector ei of the reference frame:

(A×V)t · ei = (At · ei)×V (1)

(div A)t · ei = div(At · ei) (2)

(curl A)t · ei = curl(At · ei) (3)

In rectangular Cartesian components:
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(A×V)ij = ejklAikVl (4)

(divA)i =Aij,j (5)

(curl A)ij = ejklAil,k = −(grad A : X)ij (6)

where ejkl is a component of the third rank alternating Levi-Civita tensor X and the

spatial derivative with respect to a Cartesian coordinate is indicated by a comma

followed by the component index. The notation Â(ξ) will be used for the Fourier

transform of A(x). Other notations will be specified in the text.

2.2 Constitutive equations of the reduced MFDM theory

To obtain the displacement u, the strain ε and the stress σ fields using fast Fourier

transform-based micromechanics, a small deformation setting is considered for elasto-

viscoplastic materials with periodic microstructure. The field equations are solved

at any point x of a unit cell V with periodic boundary conditions:

divσ = 0

σ = C : εe

U = grad u = Ue + Up

u− < ε > ·x periodic, σ · n anti-periodic

(7)

where< · > denotes a volume average over V , εe = (Ue)sym and C is the fourth order

elastic stiffness tensor with classic minor and major symmetries, which is known at

each point x of V . Generally, macroscopic strain < ε >= E or stress < σ >= Σ (or

mixed ones) are prescribed.

In the presence of dislocation ensembles both the average plastic distortion Up,

which results from dislocation motion, and the average elastic (or lattice) distortion

Ue are incompatible fields. In non local crystal plasticity and depending on the

resolution scale, dislocation ensembles can be categorized as GNDs (Ashby, 1970)
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and SSDs. The mesoscale FDM theory is based on an average value of the Nye

tensor α describing GND density, which is here considered as a periodic field. Here,

a simplified version of the MFDM is considered (Acharya and Roy, 2006; Roy et al.,

2007), such that the average plastic distortion rate writes:

U̇p = α× v + Lp (8)

The mobility of SSDs is represented by the mesoscale plastic distortion rate denoted

Lp where the averaging procedure was defined in Acharya and Roy (2006). The

space-time evolution of the average dislocation density tensor α is prescribed as:

α̇ = −curl U̇p (9)

Constitutive specifications on the dislocation velocity v and on the slip distortion

rate Lp are obtained from thermodynamic considerations, see Acharya and Roy

(2006) for details. Furthermore, plastic flow incompressibility is considered, i.e. Lp
ii =

0 and eiklαikvl = 0. The GND velocity v is prescribed as follows:

v =
g

|g|
v with v ≥ 0 (10)

where g is the glide force parallel to v and v is the magnitude of v. The constitutive

equation adopted for v is based on Orowan law for GND mobile dislocations:

v =
η2 b

N

(
µ

τc

)2 N∑
s=1

|γ̇s| (11)

where N is the total number of slip systems (N = 12 for FCC metals), γ̇s is the

slip rate on slip system s, η is a material constant close to 1/3 (Ashby, 1970), b is

the magnitude of the Burgers vector, τc is the resolved shear strength and µ is the

isotropic elastic shear modulus of the material. Furthermore, g writes in component

form (see details in Acharya and Roy (2006) and in Djaka et al. (2019)):

gr = eikrαjksij − eikrαik
smnαnp(αmp − αpm)

αij(αij − αji)
, (12)
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where sij = σij −
1

3
σkkδij denotes the deviatoric stress tensor.

Plastic distortion rate tensor Lp due to slip from SSDs is defined as:

Lp =
N∑
s=1

γ̇sbs ⊗ ns =
N∑
s=1

γ̇sms, (13)

where ms is the non-symmetric Schmid tensor defined as ms = bs ⊗ ns. For each

slip system s, the unit vector bs denotes the slip direction and ns the slip plane unit

normal. The constitutive equation for γ̇s introduced in eqs. 11 and 13 is given by a

classic power law:

γ̇s = γ̇0
(
|τ s|
τc

)1/m

sgn(τ s) (14)

where m is the strain rate sensitivity of the material, τ s = ms : σ is the resolved

shear stress, γ̇0 is a reference slip rate and τc is considered identical for all slip

systems. The cumulated slip rate on all slip systems is given by:

Γ̇ = |α× v|+
N∑
s=1

|γ̇s| (15)

where |α× v| is the Euclidian norm of α× v.

The evolution law for the shear strength τc follows the same hypotheses as the

strain-hardening models developed by Acharya and Roy (2006), Puri et al. (2011)

and Djaka et al. (2019):

τ̇c = θ0
τs − τc
τs − τ0

Γ̇ + k0
η2µ2 b

2 (τc − τ0)

(
N∑
s=1

|α · ns| |γ̇s|+
N∑
s=1

|α · ns| |α× v|
)

(16)

where τ0 is the yield strength due to lattice friction (which is low for FCC metals),

τs is the saturation stress, θ0 is the stage II hardening rate for FCC metals, k0 is

related to a geometric mean free path due to GND forest on slip system s. In eq.

16, |α · ns| is the L2 norm of α · ns.

For the space-time evolution of the dislocation density tensor (see eq. 9), an explicit

forward Euler scheme was implemented to numerically solve this equation using a

12



Taylor expansion at first order of αt+4t
ij where 4t is the time step, see Varadhan

et al. (2006) and Djaka et al. (2015) for details.

2.3 MFDM-EVPFFT numerical implementation

An elasto-viscoplastic crystal plasticity formulation is adopted in a small deformation

setting. Using a backward Euler implicit time discretization and the generalized

Hooke’s law, the expression of the stress tensor σ at t+ Mt is given by:

σt+Mt = C : εe,t+Mt = C :
(
εt+Mt − εp,t − ε̇p,t+Mt(σt+Mt)Mt

)
, (17)

In what follows, the supra-indices t+ Mt are omitted for sake of simplicity, and

only the fields corresponding to the previous time step t will be explicitly indicated.

The unknown total strain field ε is solved through an integral Lippmann-Schwinger

equation:

ε(x) = 〈ε〉 −
∫
V

Γ0(x− x′) : τ (x′)dV ′ (18)

where 〈ε〉 represents the average value of ε in V, Γ0 is the Green operator associated

with the homogeneous elastic moduli C0 and τ = σ−C0 : ε is the stress polarization

field. In the following, eq. 18 is solved using the FFT-based augmented Lagrangian

scheme introduced by Michel et al. (2001). As in Lebensohn and Needleman (2016),

the homogeneous elastic moduli tensor is taken as the Voigt average of C(x) over

the unit cell V such that C0 = 〈C〉.

In Fourier space, ξ is the Fourier vector of magnitude ξ =
√
ξ · ξ and components

ξi. The imaginary unit is i =
√
−1. Let ε̂(ξ) and Γ̂0(ξ) be, respectively, the Fourier

transform of ε(x) and Γ0(x). The Fourier transform of the integral Lippmann-
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Schwinger equation (eq. 18) yields:

ε̂(ξ) = −Γ̂0(ξ) : τ̂ (ξ) ∀ξ 6= 0

ε̂(0) = 〈ε〉
(19)

The calculation of the components of the Green operator in Fourier space Γ̂0
ijkl

as part of the solution of the Lippmann-Schwinger equation is performed using a

centered finite difference scheme on a rotated grid introduced by Willot (2015), see

also Djaka et al. (2017, 2019).

Let us assume now that λ
(n)
ij and e

(n)
ij are, respectively, the auxiliary guess stress

and strain fields at iteration (n). The stress polarization tensor becomes: τ
(n)
ij =

λ
(n)
ij −C0

ijkle
(n)
kl . An alternative fixed-point expression, which requires computing the

Fourier transform of the stress field instead of that of the polarization field was

reported in Michel et al. (2001):

ê
(n+1)
ij (ξ) = ê

(n)
ij (ξ)− Γ̂0

ijkl(ξ)λ̂
(n)
kl (ξ) ∀ξ 6= 0

ê
(n+1)
ij (0) = 〈ε(n)ij 〉

(20)

Once e
(n+1)
ij = FFT−1(ê

(n+1)
ij (ξ)) is obtained in the real space by using the inverse

Fourier transform (FFT−1), the nullification of the residual R, which depends on

the stress and strain tensors σ(n+1) and ε(n+1), is solved:

Rij(σ
(n+1)) = σ

(n+1)
ij + C0

ijmnε
(n+1)
mn (σ(n+1))− λ(n)ij − C0

ijmne
(n+1)
mn = 0 (21)

This nonlinear equation was solved by Lebensohn et al. (2012) using a Newton-

Raphson type scheme. The (p + 1)-guess for the stress field σ
(n+1)
ij is given by:

σ
(n+1,p+1)
ij = σ

(n+1,p)
ij −

((
∂Rij

∂σmn

)
σ(n+1,p)

)−1
Rmn

(
σ(n+1,p)

)
(22)
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Using the constitutive specifications, the Jacobian in the above expression reads:(
∂Rij

∂σmn

)
σ(n+1,p)

= δimδjn + C0
ijklC

−1
klmn + Mt C0

ijkl

(
∂ε̇pkl
∂σmn

)
σ(n+1,p)

(23)

The expression of ∂ε̇pkl/∂σmn considering the constitutive equations of the MFDM

theory yields (Djaka et al., 2019):(
∂ε̇pkl
∂σmn

)
σ(n+1,p)

=
1

2

(
∂Lp

kl

∂σmn

+
∂Lp

lk

∂σmn

)
σ(n+1,p)

+
1

2

(
∂ (α× v)kl
∂σmn

+
∂ (α× v)lk
∂σmn

)
σ(n+1,p)

(24)

An approximation expression of ∂Lp
kl/∂σmn is given by:(

∂Lp
kl

∂σmn

)
σ(n+1,p)

' nγ̇0
N∑
s=1

ms
klP

s
mn

|P s
mnσmn|n−1

(τc)n
(25)

where Ps = (ms)sym is the symmetric Schmid tensor. The determination of the

expression of ∂ (α× v)kl/∂σmn is an addition to the standard EVPFFT formulation

and is computed as follows (Djaka et al., 2019):(
∂(α× v)kl
∂σmn

)
σ(n+1,p)

= elqrαkq

(
∂ (gr/|g|)
∂σmn

v +
gr
|g|

∂v

∂σmn

)
σ(n+1,p)

(26)

with, using eq. 12:

∂ (gr/|g|)
∂σmn

=

(
δrs|g|2 − grgs

|g|3

)(
eoksαqk − eiksαik

αqp(αop − αpo)

αij(αij − αji)

)
(
δomδqn −

1

3
δmnδoq

) (27)

and: (
∂v

∂σmn

)
σ(n+1,p)

' nγ̇0
η2 b

N

(
µ

τc

)2 N∑
s=1

P s
mn

|P s
mnσmn|n−1

(τc)n
(28)

In eqs. 25 and 28, the approximation lies in the fact that the derivatives ∂τ c/∂σ

and ∂Ps/∂σ are neglected.

Once the convergence is achieved on σ(n+1) and ε(n+1), the new guess for the auxiliary

stress field λ is given using the Uzawa descent algorithm:

λ
(n+1)
ij = λ

(n)
ij + C0

ijkl

(
ekl

(n+1) − εkl(n+1)
)

(29)
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and the algorithm is stopped when the normalized average differences between the

stress fields σ and λ, and the strain fields ε and e, are smaller than a given threshold

error (typically 10−5). Following Lebensohn et al. (2012), this condition implies

the fulfillment of both stress equilibrium and strain compatibility up to sufficient

accuracy.

In the algorithm described above, an overall macroscopic strain E = 〈ε(n)〉 is applied

to the periodic unit cell V in the form of:

Eij = Et
ij + Ėij4t (30)

In cases of mixed boundary conditions with imposed macroscopic strain rate Ėij and

stress Σij, the (n + 1)-guess of the macroscopic strain E
(n+1)
ij was given in Michel

et al. (2001) and Lebensohn et al. (2012).

The direct and the inverse Fourier transforms are computed here by using Fast

Fourier Transform (FFT) algorithm. The spatial periods of the unit cell are T1, T2

and T3 in the x1, x2 and x3 directions, respectively, and discretized by a regular

rectangular grid with N1×N2×N3 voxels with position vector x = (i1δ1, i2δ2, i3δ3),

where i1 = 0→ N1−1, i2 = 0→ N2−1, i3 = 0→ N3−1 and δ1, δ2, δ3 are the voxel

sizes in the x1, x2 and x3 directions (here δ1 = δ2 = δ3 = δ). The computational grid

is constituted of a total of Ntot = N1 ×N2 ×N3 voxels.

Let α̂(ξ) be the Fourier transform of α(x). Following Djaka et al. (2015, 2019), the

components of the Nye tensor are updated in the Fourier space as:

α̂t+4t
ij =κ (η)

(
α̂t
ij −4t i ξk

(
(̂αijvk)

t

− (̂αikvj)
t
))
−4t i ξk ejkl

̂(Lp
il)

t
(31)

where an exponential second order spectral low-pass filter κ (η) is used to stabilize

the numerical approximation. This spectral filter allows eliminating high frequencies

responsible for spurious oscillations. The exponential filter is defined as function of
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discrete frequencies ηj = mj/Nj with ξj = 2πmj/Tj (Djaka et al., 2015, 2019):

κ
(
m1

N1

,
m2

N2

,
m3

N3

)
= exp

(
−β

((
m1

N1

)2p

+
(
m2

N2

)2p

+
(
m3

N3

)2p
))

, (32)

where mj (j = 1 → 3) are arranged in Fourier space as follows (Moulinec and

Suquet, 1998):

mj =
((
−Nj

2
+ 1

)
,
(
−Nj

2
+ 2

)
, ...,−1, 0, 1, ...,

(
Nj

2
− 1

)
,
(
Nj

2

))
(33)

if Nj is even, and

mj =
((
−Nj − 1

2

)
, ...,−1, 0, 1, ...,

(
Nj − 1

2

))
(34)

if Nj is odd.

The damping parameter β is defined as β = −log εM , where εM is a low value

parameter that was optimized by Djaka et al. (2015). For applications, εM = 0.2

and p = 1.

To fix the time step 4t in eq. 31 in order to satisfy stability requirements for nu-

merically solving the dislocation density transport equation, a user-specified fraction

denoted c = 0.25 of Courant-Friedrichs-Lewy (CFL) limit is used such that:

4tCFL = c
δ

vmax

(35)

where δ is the voxel size and vmax is the maximal GND velocity. Finally, the time

step is given by 4t = min (4tCFL, 4tε) where 4tCFL is defined in eq. 35 and the

time step 4tε is the classic time step used in EVPFFT.

2.4 Use of finite difference schemes for spatial derivatives

The need for better numerical performance and stability in spectral approaches

to avoid spurious oscillations of the local fields, known as Gibbs phenomenon or
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aliasing, motivated the development of modified Green operators for the calculation

of the displacement field and gradients of the latter in Fourier space (Willot and

Pellegrini, 2008). For this, a successful numerical strategy (Berbenni et al., 2014;

Lebensohn and Needleman, 2016) based on earlier works (Müller, 1996, 1998; Dreyer

et al., 1999) consists in approximating first and second derivatives in Cartesian

space using finite difference (FD) schemes, and taking discrete Fourier transforms

from these FD expressions. Among these FD-based schemes, we choose a modified

discrete Green operator based on centered FD on a rotated grid proposed (Willot,

2015) and adopted in different subsequent FFT-based implementations (Djaka et al.,

2017; Bertin and Capolungo, 2018; Lucarini and Segurado, 2019; Djaka et al., 2019;

Haouala et al., 2020) given its good numerical performance. The FFT-resolution of

the Lippmann-Schwinger used a DFT-scheme coupled to a rotated centered finite

difference scheme. It was observed (Djaka et al., 2019) that in the MFDM-EVPFFT

formulation, the latter scheme does not modify very much the number of Newton-

Raphson iterations needed for numerical convergence of the augmented Lagrangian

scheme in comparison with the CP-EVPFFT and lead to more accurate fields near

discontinuities than when using the classic Green operator.
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3 Application to polycrystalline aggregates: grain size effect and re-

versible plasticity

3.1 Material and simulation parameters

In the following numerical simulations, Al polycrystalline aggregates made of 100

grains or 27 grains resulting from periodic Voronoi tessellations are considered, see

Fig. 1. The Voronoi polyhedra characterize the grains and their shapes. In the present

study, two different voxelized polycrystalline RVE obtained with periodic Voronoi

tessellations are used with different grain sizes: 128 × 128 × 128 voxels (Fig. 1 (a))

and 64× 64× 64 voxels (Fig. 1 (b)).The crystallographic orientations of the grains

are randomly distributed and are characterized by three Euler-Bunge angles: φ1,

Φ, φ2. Twelve (111) < 110 > slip systems are considered. The microstructure is

characterized by a single internal length scale parameter which is the average grain

size denoted d̄. The latter is deduced from H the period of the unit cell as d̄ =

H/3
√

27 and d̄ = H/3
√

100 for RVE with 27 grains or 100 grains respectively. A

similar procedure was used by Lebensohn and Needleman (2016) to generate 3D

polycrystals with different mean grain sizes using periodic Voronoi tessellations.

The material parameters related to elastic constants (Al), slip rule, GND veloc-

ity (γ̇0, m and η) and hardening (τ0, τs, θ0 and k0) are consistent with pure Al.

Here, the parameters are the same as in Djaka et al. (2019) and a specific fit of

experimental data has not been carried out. The Burgers vector magnitude for Al

is b = 2.86 × 10−10m. The reference material parameters used for numerical simu-

lations are reported in Table 1. As reported in eq. 7, periodic boundary conditions

are used and the unit cell is submitted to tensile (resp. compression) loading in the

x3-direction at macroscopic strain rate Ė33 = 10−3s−1 (resp. Ė33 = −10−3s−1) with

mixed macroscopic strain/stress boundary conditions. We have chosen k0 = 20 fol-
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Figure 1. Different voxelized polycrystalline RVE obtained with periodic Voronoi tessel-

lations and used for the present numerical simulations: 100 randomly oriented grains dis-

cretized with 128× 128× 128 voxels (a) and 27 randomly oriented grains discretized with

64× 64× 64 voxels (b).

lowing the value identified by Acharya and Beaudoin (2000) for the case of FCC

polycrystals and by Roy and Acharya (2006) for MFDM. In the context of MFDM-

EVPFFT, starting from k0 = 20, the role of k0 on overall strain hardening and GND

density pile-ups was recently studied in Djaka et al. (2019) for two-phase laminate

microstructures. For conventional crystal plasticity (CP-EVPFFT), the materials

parameters used were the same except that α = 0 (no mobile GND density and

no GND density in the strain-hardening law). However, in CP-EVPFFT, α can be

computed a posteriori using the definition of the Nye tensor in a small strain set-

ting: α = −curl Up together with a centered finite difference scheme as detailed in

Berbenni et al. (2014), Lebensohn and Needleman (2016) and Djaka et al. (2019).

Table 1

List of material parameters used for numerical simulations

E (GPa) ν γ̇0(s−1) m η b (m) τ0 (MPa) τs (MPa) θ0 (MPa) k0

69 0.33 1 0.05 0.33 2.86 ×10−10 3 12 150 20
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3.2 Overall grain size dependent responses

Here, a polycrystalline RVE with 100 or 27 randomly oriented grains is used for these

numerical simulations with periodic Voronoi tessellations of 128× 128× 128 voxels

and 64× 64× 64 voxels respectively. Polycrystals with different mean grain sizes d̄

ranging from 0.25µm to 154.72µm are considered using the MFDM-EVPFFT model.

The macroscopic tensile stress-strain curves are obtained and are compared to the

results obtained from CP-EVPFFT simulations using same material parameters for

slip rule and Kocks-Mecking’s hardening law (Mecking and Kocks, 1981).

Using MFDM-EVPFFT in a plausible range of physical grain sizes for current metals

and alloys, a grain size effect on the macroscopic tensile response of the Al polycrys-

talline aggregate is observed in Fig. 2(a) for the RVE constituted of 100 grains with

128× 128× 128 voxels (0.25µm to 100µm) and in Fig. 2(b) for the RVE constituted

of 27 grains with 64× 64× 64 voxels (0.25µm to 154.72µm). Such size effect is not

predicted using the conventional CP-EVPFFT that leads to grain size-insensitive

response (see the dotted lines in Fig. 2(a,b)).

The scaling law for the macroscopic tensile flow stress as a function of the mean

grain size d̄ is now investigated in Fig. 3. For the chosen default material parameters

reported in Table 1 and for these two polycrystalline RVEs (100 and 27 grains), a

linear fit shows that a Hall-Petch law with exponent −0.5 is found for d̄ ranging

from 0.25µm to 154.72µm. This figure shows that the overall tensile flow stress at

Ep
33 =< εp33 >= 0.2% is well fitted in this grain size range (with a square correlation

coefficient close to 1) by the Hall-Petch’s relationship for both RVEs:

< σ33 >=< σ∞33 > +Kd̄n, (36)

where n = −0.5, < σ∞33 >= 20MPa (RVE: 100 grains) or < σ∞33 >= 19.8MPa (RVE:
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Figure 2. Grain size dependent tensile responses up to 1% strain for FCC polycrystals as

predicted by the MFDM-EVPFFT formulation (solid lines) with grain sizes: (a) d̄ ranging

from 0.25µm to 100µm using a RVE of 100 randomly oriented grains with 128×128×128

voxels, (b) d̄ ranging from 0.25µm to 154.72µm using a RVE of 27 randomly oriented

grains with 64×64×64 voxels. For comparison, the tensile responses given by conventional

plasticity (CP-EVPFFT) are also reported for both RVEs (dotted lines).
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Figure 3. Grain size effect reported on the overall flow stress at 0.2% overall plastic strain

(Ep
33 = 0.2%) and comparison with a Hall-Petch’s type scaling law (linear fits: dotted

lines). The numerical simulations are performed with the MFDM-EVPFFT formulation

with a RVE of 100 grains and 128 × 128 × 128 voxels and with a RVE of 27 grains and

64× 64× 64 voxels.

27 grains) is the grain size independent flow stress that is obtained from conventional

crystal plasticity (CP-EVPFFT), K = 71.6MPa.µm0.5 (RVE: 100 grains) or K =

63.3MPa.µm0.5 (RVE: 27 grains). Note that the size-dependent part Kd̄n is due

to non local GND-based plasticity in the MFDM-EVPFFT and the values reported

here for K and n appear to be realistic at low strains. However, we did not attempt to

calibrateK (the so-called Hall-Petch’s slope) and< σ∞33 > directly from experimental

data as reported for instance in Cordero et al. (2016), so that simulation predictions

remain qualitative.

It is noteworthy that grain-size dependent behaviors for FCC polycrystals were also

studied by other theories based on lower order strain gradient plasticity models

(Acharya and Beaudoin, 2000; Cheong et al., 2005; Haouala et al., 2020) or based
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on higher order strain gradient plasticity models (Ohno and Okumura, 2007; Ohno

et al., 2008; Cordero et al., 2010, 2012; Lebensohn and Needleman, 2016). Using 3D

FE simulations for Ni, Acharya and Beaudoin (2000) obtained the following scaling

law < σ >∝ Kd̄−4/5 at higher strains (5% − 20%) with average grain sizes ranging

from 20µm to 200µm. For Cu and Al, Cheong et al. (2005) performed 3D FE simula-

tions with the commercial code ABAQUS and found a scaling law as < σ >∝ Kd̄−1/2

at low strains (0.2%) based on a non local GND-based crystallographic model first

developed by Busso et al. (2000). To fit the Hall-Petch’s curves, these authors also

consider the role of initial dislocation densities present at grain boundaries using dif-

ferent SSD densities. Recently, Haouala et al. (2020) also simulated the Hall-Petch

effect in different FCC polycrystalline metals (Cu, Al, Ag, Ni) using a FFT-based

Galerkin approach for lower strain gradient crystal plasticity. For a grain size range

d̄ between 10µm and 80µm, they obtained a Hall-Petch’s relationship depending

on the initial dislocation density in the material and a scaling law for Al as d̄n

with n = −0.69 and n = −0.59 for overall strains of 1% and 5% respectively. In

the case of higher order stress theories and due to the large number of degrees of

freedom involved in these theories, only two-dimensional RVEs with 2D periodic

Voronoi tessellations (Cordero et al., 2012) or 2D unit cells with 16 hexagonal grains

(Ohno et al., 2008) were considered with the FE method assuming periodic boundary

conditions. Therefore, crystal plasticity was limited to 2D planar double slip. This

limitation may modify the scaling law compared to simulations considering 3D poly-

crystals. Using single spherical or tetrakaidecahedron model grains and the higher

order stress model of Gurtin (2002), Ohno and Okumura (2007) found a grain size ef-

fect on the flow stress at 0.2% strain resulting from self-energy of GND and a scaling

law as < σ >∝ Kd̄−1 (for d̄ larger than d̄ = 0.1µm). In Ohno et al. (2008), a strong

grain size effect was reported on 2D polycrystals but only three mean grain sizes

(d̄ = 1µm, 10µm, 100µm) were considered in their FE simulations but the scaling
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law was not reported. It is interesting to compare predictions of the present model

with the 2D numerical results of Cordero et al. (2012) for polycrystals deformed at

low strains. Like in Cordero et al. (2012), the present 3D MFDM-EVPFFT simu-

lation results exhibit a Hall-Petch’s relationship for the flow stress at low strains.

In the model of Cordero et al. (2012), the Hall-Petch’s exponent was identified in

a phenomenological way by calibrating the generalized moduli relating higher order

stresses to micro-deformations.

3.3 Grain size dependence of intra-granular mechanical fields

Let us now study grain size effect on the spatial distribution of intra-granular me-

chanical fields. To that purpose, three mechanical field outputs are particularly an-

alyzed:

(i) the Von Mises equivalent stress σeq to study stress hotspots in the polycrystalline

aggregate. The Von Mises equivalent stress σeq is defined as:

σeq =

√
3

2
s : s (37)

where s is the deviatoric stress tensor.

(ii) the equivalent cumulated plastic strain εpeq to study plastic strain localization in

the polycrystal. εpeq is defined as:

εpeq =
∫ t

0

√
2

3
ε̇p : ε̇p dt (38)

where ε̇p is the symmetric part of U̇p.

(iii) the scalar GND density ρGND defined from the Nye tensor α as:

ρGND =

√
α : α

b
(39)

The examination of the spatial distribution of this scalar GND density is preferred

to the full analysis of each particular tensor components (9 components).

25



Figure 4. Spatial distribution of equivalent Von Mises stress σeq in MPa recorded at

Ep
33 = 0.2% for three grain sizes d̄ (MFDM-EVPFFT) with same scale range: 0.25µm

(a), 1µm (b), 10µm (c). Simulation results with CP-EVPFFT (d). The scale range for

CP-EVPFFT is different to show the detailed fields.

Three average grain sizes d̄ are considered for a RVE with 128 × 128 × 128 voxels

(100 grains): 0.25µm, 1µm, 10µm. The mechanical fields are all recorded at the same

overall plastic strain: Ep
33 = 0.2%. The contour plots of σeq expressed in MPa are

reported on Fig. 4.

At lowest grain size (d̄ = 0.25µm) (Fig. 4(a)), it is seen that the equivalent Von Mises

stress is inhomogeneous and localized in strong stress hotspots at grain boundary

regions or near triple junctions. Strong stress gradients are also observed from grain

boundaries or triple junctions to grain interiors with non local MFDM-EVPFFT

formulation. At larger grain sizes (d̄ = 10µm, Fig. 4(c)), the stress is less localized
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and stress hot spots gradually disappear for the same used stress scale range for

contour plots. Fig. 4(d) shows the stress σeq given by CP-EVPFFT. The latter leads

to more homogeneous intra-granular stress field. In addition, undesirable checker-

board patterns are visible inside grains on the stress field with CP-EVPFFT. This

phenomenon is absent with MFDM-EVPFFT, which leads to smoother spatial field

variations. Both formulations use finite difference schemes for calculating spatial

derivatives in the Fourier space, which shows that this difference only comes from

the non local MFDM-EVPFFT formulation. A similar trend was also observed with

the non local SG-EVPFFT formulation developed by Lebensohn and Needleman

(2016).

The equivalent Von Mises stress statistics extracted from MFDM-EVPFFT are pro-

vided using 100 bin values. Fig. 5 reports the histograms of σeq (Fig. 5(a)) and

σeq/Σeq (Fig. 5(b)) as a function of average grain size d̄, where Σeq =< σeq > is

the volume average of σeq over the RVE. For comparisons, the statistics on σeq and

σeq/Σeq using CP-EVPFFT local formulation are also reported on Fig. 5. It is first

shown that the distributions of σeq are quite heterogeneous and the stress ampli-

tudes between the maximal and minimal values increase as d̄ decreases using the

MFDM-EVPFFT formulation. The stress amplitude given by conventional crystal

plasticity (CP-EVPFFT) is lower than the other ones given by MFDM-EVPFFT.

Considering now the field statistics on the relative stress σeq/Σeq, it is observed that

the distributions are sharper for lower grain sizes. For d̄ = 0.25µm, the stress values

are quite high and are closer to the average stress which is strong. This trend is

consistent with high stress hotspots (see Fig. 4). Conversely, the case d̄ = 10µm ex-

hibits a behavior closer to the one obtained from CP-EVPFFT with a large number

of regions where stresses are much lower than the average stress Σeq, see Fig. 5(b).

The contour plots of the equivalent cumulated plastic strain εpeq are reported on
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Figure 5. Histograms of σeq (a) and σeq/Σeq (b) recorded at Ep
33 = 0.2% for different

average grain sizes d̄ with MFDM-EVPFFT and comparison with CP-EVPFFT.
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Fig. 6(a-c) using MFDM-EVPFFT. For all grain sizes, it is seen that εpeq is quite

heterogeneous and deformation bands occur. A significant evolution of εpeq is ob-

served when d̄ is decreasing from 10µm (Fig. 6(c)) to 0.25µm (Fig. 6(a)), where a

network of strain localization bands occurs using MFDM-EVPFFT. At lower grain

sizes, the regions where plastic strain cannot develop are larger inside grains due to

stronger slip gradients. This explains why plastic strain described by εpeq becomes

more localized in deformation bands and stronger inside them for lowest grain size

d̄ = 0.25µm. Conversely, Fig. 6(d) shows that plastic strain is more homogeneous in

the case of CP-EVPFFT.

This is confirmed by the histograms reported on Fig. 7 using 100 bin values. For a

same overall plastic strain (Ep
33 = 0.2%), higher peaks centered at smaller values of

εpeq are observed for small grain sizes, i.e. d̄ lower than 1µm. As shown in Fig. 7, the

polycrystal with smallest grain size (d̄ = 0.25µm) exhibits a longer tail regarding the

distribution of εpeq. Therefore, for a same overall plastic strain, εpeq is large in some re-

gions corresponding to localized deformation bands crossing grains. Conversely, large

grain sized polycrystals simulated with MFDM-EVPFFT or conventional plasticity

simulated by CP-EVPFFT do no exhibit such long tails on the histograms of εpeq,

see Fig. 7. This corresponds to a more homogeneous plastic deformation distribution

inside grains as given in Fig. 6(d).

The contour plots of ρGND expressed in m−2 obtained from the MFDM-EVPFFT

model are reported on Fig. 8(a-c) for the three different grain sizes using the same

scale range to study grain size effect on the spatial distributions of ρGND. These

figures show that ρGND is increasing from grain interiors to grain boundaries and

the magnitude of ρGND increases when d̄ decreases. The ρGND field is high close to

grain boundaries and spreads over the grain interiors. This is consistent with the

assumption of a finite grain boundary affected zone used in internal length mean field
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Figure 6. Spatial distribution of equivalent cumulated plastic strain εpeq recorded at

Ep
33 = 0.2% for three average grain sizes d̄ (MFDM-EVPFFT) with same scale range:

0.25µm (a), 1µm (b), 10µm (c). Simulation results with CP-EVPFFT (d) with same scale

range.

approaches as developed by Pipard et al. (2009) for polycrystals with different mean

grain sizes. The regions with high stress hotspots observed in Fig. 4(a) approximately

correspond to high GND densities in Fig. 8(a), which means that important plastic

strain incompatibility is present at these locations in the aggregate when grain size

is smaller (d̄ = 0.25µm). For comparisons, the results obtained at Ep
33 = 0.2% from

the CP-EVPFFT model is reported on Fig. 8(d) for the ρGND field. This figure

shows that in the case of conventional (local) plasticity, the calculated GND density

is only localized at grain boundaries, i.e. only inter-granular GNDs. Indeed, there is

no GND density pile up spreading inside the grain from grain boundaries and the

magnitude of ρGND is much less important than in the case of the predictions given
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Figure 7. Histograms of εpeq recorded at Ep
33 = 0.2% for different average grain sizes d̄ with

MFDM-EVPFFT and comparison with CP-EVPFFT.

by the MFDM-EVPFFT model, see Fig. 8(d).

The histograms of α = ρGNDb =
√
α : α expressed in mm−1 are reported on Fig. 9

(100 bin values). The histograms of α are strongly dependent on average grain size

d̄. Smaller grain-sized polycrystals, e.g. the MFDM-EVPFFT simulation with d̄ =

0.25µm, exhibit broader distribution peaks centered at larger values of α. Conversely,

the histogram obtained with d̄ = 10µm exhibits a high peak centered at a lower value

of α. CP-EVPFFT demonstrates a very high distribution peak at very low values of

α, which are approximately 3 order of magnitudes lower than the MFDM-EVPFFT

simulations with d̄ = 1µm. In addition, conventional plasticity is responsible for a

narrow distribution of α with too low values, which appear to be inconsistent at least

qualitatively with GND profiles obtained from EBSD measurements for deformed

polycrystals (Calcagnotto et al., 2010; Allain-Bonasso et al., 2012; Konijnenberg

et al., 2015; Jiang et al., 2015; Wallis et al., 2016). Overall grain size effects (Hall-
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Figure 8. Spatial distribution of GND densities ρGND in m−2 recorded at Ep
33 = 0.2% for

three average grain sizes d̄ (MFDM-EVPFFT) with same scale range: 0.25µm (a), 1µm

(b), 10µm (c). Simulation results with CP-EVPFFT (d) with a different scale range.

Petch law) are due to the high level of GND densities for smaller grain sizes compared

to larger ones and the spatial gradients of GND density. This is consistent with DDD

results, where accumulation of geometrically necessary dislocations in the form of

pile-ups is at the origin of the grain size effect of these microstructures (Lefebvre

et al., 2007; Balint et al., 2010).

These numerical results demonstrate that a strong dependence on the grain size was

observed on both cumulated plastic strain and on GND density in the course of a

monotonous tensile test at low strains. However, even though stress hot spots ob-

tained with MFDM-EVPFFT appears to be located where high GND densities are

present (near grain boundaries or triple junctions), there is no clear spatial correla-

tion between GND densities and cumulated plastic slip. Similar conclusions were ob-
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Figure 9. Histograms of GND densities ρGND recorded at Ep
33 = 0.2% obtained with

MFDM-EVPFFT at different grain sizes (a) and obtained with CP − EV PFFT (zoom

up) (b).
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tained with the higher-order strain-gradient plasticity Gurtin’s model (Gurtin, 2002)

implemented in the EVPFFT formulation by Lebensohn and Needleman (2016) or

in the case of the micromorphic approach developed for polycrystals by Cordero

et al. (2012).

3.4 Reversible plasticity and Bauschinger effect

In addition to monotonic tensile loadings, tension-compression stress-strain responses

and reversible plasticity are investigated using a RVE with 64×64×64 voxels and 27

grains, see Fig. 1(b). Same materials parameters as before are used and comparisons

are made between MFDM-EVPFFT and CP-EVPFFT to see the differences on the

Bauschinger stress X. X is defined as the difference between the first stage tensile

flow stress at E33 = 0.2% and the second stage compressive plastic flow stress at ini-

tial yielding in compression (deviation from the elastic slope at reversible loading).

Then, the mechanical tests were stopped at E33 = 0% during compressive load-

ing after forward tensile loading up to E33 = 0.2%. Tension-compression responses

simulated with MFDM-EVPFFT are reported on Fig. 10 for four mean grain sizes

d̄: 0.25µm, 1.5472µm, 15.472µm and 154.72µm, respectively. These ones are also

compared to the tension-compression responses given by the grain size independent

CP-EVPFFT formulation. The Bauschinger stresses X are reported in Table 2 and

show grain size dependence. X increases as d̄ decreases following the predictions of

MFDM-EVPFFT. The lowest Bauschinger stress is obtained with CP-EVPFFT and

corresponds to classic inter-granular kinematic hardening with conventional crystal

plasticity. This latter is a typical kinematic hardening which is classically present in

bulk metals.

By specifically comparing the cyclic responses over a complete cycle: tension (up

to E33 = 0.2%) - compression (up to E33 = −0.2%) - tension (up to E33 = 0.2%)
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Figure 10. Reversible tension-compression tests performed with MFDM-EVPFFT (solid

lines) for four average grain sizes d̄: 0.25µm, 1.5472µm, 15.472µm, 154.72µm and compar-

ison with CP-EVPFFT (dotted line).

Table 2

Bauschinger stress X expressed in MPa for four simulations using MFDM-EVPFFT and

CP-EVPFFT

CP-EVPFFT MFDM-EVPFFT MFDM-EVPFFT MFDM-EVPFFT MFDM-EVPFFT

size independent 154.72µm 15.472µm 1.5472µm 0.25µm

13.14 14.98 21.53 33.6 41.48

obtained from CP-EVPFFT and from MFDM-EVPFFT with d̄ = 0.25µm, it is

observed on Fig. 11 that the MFDM-EVPFFT exhibits both stronger kinematic

hardening at the origin of the Bauschinger stress X and stronger isotropic hardening

as well. Therefore, it is interesting to study the evolution of both GND density and

equivalent Von Mises stress from state A (resp. A’) at the end of first tensile stage

in Fig. 11, during the compression stage (states B (resp. B’) and C (resp. C’) on
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Figure 11. Tension-compression-tension cyclic tests performed with MFDM-EVPFFT

(solid line) for d = 0.25µm and with CP-EVPFFT (dotted line) for comparisons of the

evolution of the macroscopic stress during cyclic loading. Different states A, B, C, D,

E (resp. A’, B’, C’, D’, E’) are marked on the figure using the MFDM-EVPFFT (resp.

CP-EVPFFT) formulation.

Fig. 11) and during the second tensile stage (states D (resp. D’) and E (resp. E’) on

Fig. 11). The notations A, B, C, D, E are used for the MFDM-EVPFFT simulation

and A’, B’, C’, D’, E’ are used for the CP-EVPFFT simulation.

As shown in Fig. 12, the evolution of ρGND from states A to E exhibits more im-

portant variations when calculated with the MFDM-EVPFFT model (d̄ = 0.25µm).

In this figure, the reference scale for numerical values of ρGND in Fig. 12 is taken

at state A, i.e. at the end of the first tensile stage. In between states A and B or

states C and D, GND annihilations occur in the whole aggregate with lower levels

of ρGND at states B and D. These dislocation annihilations are followed by GND

density rebuilding up at states C and E. In conventional plasticity (CP-EVPFFT),
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ρGND distributions are mainly located at the grain boundaries and exhibit some

variations (essentially at states B’ and D’), which are lower than the ones reported

with MFDM-EVPFFT. This demonstrates that the Bauschinger stress found with

CP-EVPFFT is mainly due to classic inter-granular stress accommodation as found

by self-consistent models applied to metals, see e.g. Mareau and Berbenni (2015).

With the MFDM-EVPFFT formulation, the development of internal stress during

forward tensile loading, their relaxation and their re-building with inverse polariza-

tion during reverse loading is due to polarized dislocation microstructures formed

in forward tensile loading, its annihilation and inverse polarization at reverse load-

ing. This observation was also highlighted in different contributions using MFDM

with the FE method for thin films (Roy and Acharya, 2006; Puri et al., 2011),

composite materials (Richeton et al., 2011; Taupin et al., 2012) and ice single and

multi-crystals (Taupin et al., 2007; Richeton et al., 2017). The corresponding evolu-

tions of the stress field (σeq) for MFDM-EVPFFT (d̄ = 0.25µm) in comparison with

CP-EVPFFT are reported for corresponding states A (resp. A’) to E (resp. E’) on

Fig. 13. The reference scale for σeq in Fig. 13 is taken at state A (resp. A’). Like

ρGND, stronger variations in magnitudes of σeq are observed using MFDM-EVPFFT

compared to CP-EVPFFT.

Histograms of α (expressed in mm−1) and uniaxial internal stress field measured by

the quantity σ33− < σ33 > (expressed in MPa) for the 5 aforementioned states A

(resp. A’), B (resp. B’), C (resp. C’), D (resp. D’), E (resp. E’) allow to characterize

the statistical description of plastic incompatibilities in the polycrystal during cyclic

plasticity (here one cycle is considered). Figs. 14 and 15 both use 100 bin values

and describe the spatial variations of α and σ33− < σ33 >, respectively. Following

Fig. 14, it is shown from that lattice incompatibility is partly removed at states B

and D accompanied by a strong decrease of the stress field, see Fig. 13. Compared

to reference state A, where the distribution peak of α is centered at 5mm−1, state
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Figure 12. Evolution of GND density ρGND in m−2 during tension-compression-tension

using present MFDM-EVPFFT (states A to E) with d̄ = 0.25µm (left figures), using

conventional CP-EVPFFT (states A’ to E’) (right figures).
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Figure 13. Evolution of σeq in MPa during tension-compression-tension using present

MFDM-EVPFFT (states A to E) with d̄ = 0.25µm (left figures), using conventional

CP-EVPFFT (states A’ to E’) (right figures).
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Figure 14. Histograms of the norm of the Nye tensor α (mm−1) following the cycling

loading simulated with MFDM-EVPFFT and recorded at the five states A, B, C, D, E

(a), with CP-EVPFFT and recorded at the five states A’, B’, C’, D’, E’ (b).

D exhibits the lowest values of α with a peak centered around 2mm−1 (at this

state D, α is partly removed). At the end of state E, the highest values of α are

found. In this state, the histogram shows a sharper peak around 6mm−1. Hence,
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Figure 15. Histograms of internal stress field σ33− < σ33 > (MPa) following the cycling

loading simulated with MFDM-EVPFFT and recorded at the five states A, B, C, D, E

(a), with CP-EVPFFT and recorded at the five states A’, B’, C’, D’, E’ (b).
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the spatial variation of GND densities is more localized compared to previous states

due to partial annihilation and rebuilding of GND density during the whole cycle.

In comparison, the CP-EVPFFT simulations exhibit a decrease of GND densities

at states B’ and D’ (in D’ α takes the lowest values) and a small increase with a

same distribution profile between A’ and E’, i.e. a strong peak centered around a

low value of α = 0.02mm−1. Internal stress histograms (Fig. 15) first show that

during the whole cycle the values of σ33− < σ33 > spread over a range of −50MPa

to 50MPa for MFDM-EVPFFT, while it is only around −30MPa to −30MPa for

CP-EVPFFT. This explains the larger values of X observed with MFDM-EVPFFT

compared to CP-EVPFFT, see Table 2. In the cases of states B and D, the histograms

of σ33− < σ33 > obtained with MFDM-EVPFFT exhibits narrower distributions due

to internal stress relaxation and GND density annihilations in these two intermediate

states. A rebuilding of new larger internal stress state is obtained at the end of the

cycle with a broader distribution at state E.
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4 Conclusions

A spectral formulation called MFDM-EVPFFT was developed as an extension of

the EVPFFT model (Lebensohn et al., 2012) that includes both GNDs and SSDs.

The MFDM theory was earlier developed by Acharya and Roy (2006) and Roy and

Acharya (2006) and implemented in finite elements to study small scale plasticity

responses. The present FFT-based approach is able to efficiently account for average

grain size effects on the flow stress of large 3D polycrystalline unit cells following a

Hall-Petch law. Numerical simulations with different voxelized polycrystalline RVEs

obtained with periodic Voronoi tessellations and different grain sizes were performed

with 128 × 128 × 128 voxels (100 grains) and 64 × 64 × 64 voxels (27 grains). In

this non local formulation including a spectral resolution of the space-time evolution

of GND densities, the size dependence is related to the generation of higher GND

density from grain interiors to grain boundaries as opposed to conventional crystal

plasticity, which only describes low GND densities at grain boundaries. Statistical

analyses with 100 bin histograms of mechanical fields show that GND density and

equivalent plastic strains are not correlated. Higher GND densities are present in

dislocation pile-ups from grain interior to grain boundaries and more localized ac-

cumulated slip in grain interior is observed for smaller grains sizes. These results ex-

tend to polycrystals the ones obtained by Djaka et al. (2019) for two-phase laminate

microstructures. Besides, reversible plasticity is studied for polycrystals considering

tension-compression-tension cycle. A grain size dependent Bauschinger translational

strain-hardening is simulated for polycrystals with the MFDM-EVPFFT formula-

tion.
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Wang, H., Wu, P. D., Tomé, C. N., Huang, Y., 2010. A finite strain elastic-

viscoplastic self-consistent model for polycrystalline materials. Journal of the Me-

chanics and Physics of Solids 58, 594–612.

Weng, G. J., 1983. A micromechanical theory of grain size dependence in metal

plasticity. Journal of the Mechanics and Physics of Solids 31, 193–203.

Willot, F., 2015. Fourier-based schemes for computing the mechanical response of

composites with accurate local fields. Comptes Rendus Mecanique 343, 232–245.

Willot, F., Pellegrini, Y. P., 2008. Fast Fourier transform computations and build-up

60



of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous

media. Continuum Models and Discrete Systems, D. Jeulin and S. Forest (eds.),

CMDS11, Ecole des Mines Paris, 443–449.
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