Turnpike in optimal shape design - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Turnpike in optimal shape design

Résumé

We introduce and study the turnpike property for time-varying shapes, within the viewpoint of optimal control. We focus here on second-order linear parabolic equations where the shape acts as a source term and we seek the optimal time-varying shape that minimizes a quadratic criterion. We first establish existence of optimal solutions under some appropriate sufficient conditions. We then provide necessary conditions for optimality in terms of adjoint equations and, using the concept of strict dissipativity, we prove that state and adjoint satisfy the measure-turnpike property, meaning that the extremal time-varying solution remains essentially close to the optimal solution of an associated static problem. We show that the optimal shape enjoys the exponential turnpike property in term of Hausdorff distance for a Mayer quadratic cost. We illustrate the turnpike phenomenon in optimal shape design with several numerical simulations.
Fichier principal
Vignette du fichier
shapeturnpike.pdf (1.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02388972 , version 1 (02-12-2019)
hal-02388972 , version 2 (19-06-2020)

Identifiants

Citer

Gontran Lance, Emmanuel Trélat, Enrique Zuazua. Turnpike in optimal shape design. 2019. ⟨hal-02388972v1⟩

Collections

UNIV-PARIS7
163 Consultations
94 Téléchargements

Altmetric

Partager

More