CLT for Circular beta-Ensembles at High Temperature - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

CLT for Circular beta-Ensembles at High Temperature

Résumé

We consider the macroscopic large $N$ limit of the Circular beta-Ensemble at high temperature, and its weighted version as well, in the regime where the inverse temperature scales as $\beta/N$ for some parameter $\beta>0$. More precisely, in the limit $N\to\infty$, the equilibrium measure of this particle system is described as the unique minimizer of a functional which interpolates between the relative entropy ($\beta=0$) and the weighted logarithmic energy $(\beta=\infty$). The purpose of this work is to show that the fluctuation of the empirical measure around the equilibrium measure converges towards a Gaussian field whose covariance structure interpolates between the Lebesgue $L^2$ ($\beta=0$) and the Sobolev $H^{1/2}$ ($β=\infty$) norms. We furthermore obtain a rate of convergence for the fluctuations in the $W_2$ metric. Our proof uses the normal approximation result of Lambert, Ledoux, and Webb [2017], the Coulomb transport inequality of Chafaï, Hardy, and Maïda [2018], and a spectral analysis for the operator associated with the limiting covariance structure.
Fichier principal
Vignette du fichier
CbE10.pdf (566 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02385025 , version 1 (28-11-2019)

Identifiants

  • HAL Id : hal-02385025 , version 1

Citer

Adrien Hardy, Gaultier Lambert. CLT for Circular beta-Ensembles at High Temperature. 2019. ⟨hal-02385025⟩
73 Consultations
172 Téléchargements

Partager

More