Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data - Archive ouverte HAL
Article Dans Une Revue Mathematical Biosciences and Engineering Année : 2020

Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data

Résumé

The objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by Autoroutes Trafic.
Fichier principal
Vignette du fichier
BDG-MBEpreprint.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02379540 , version 1 (25-11-2019)

Identifiants

  • HAL Id : hal-02379540 , version 1

Citer

Enrico Bertino, Régis Duvigneau, Paola Goatin. Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data. Mathematical Biosciences and Engineering, 2020, 17 (2), pp.1511-1533. ⟨hal-02379540⟩
162 Consultations
147 Téléchargements

Partager

More