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Abstract

The objective of this paper is to analyze the inclusion of one or more random pa-
rameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use
a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of
the method, we test it against real data coming from vehicle embedded GPS systems,
provided by Autoroutes Trafic.
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1 Introduction

Macroscopic traffic flow models consisting in (systems of) partial differential equations are
used to simulate traffic flows on road networks since decades [25]. Yet, these models are
usually fully deterministic, and the coupling with real data poses severe difficulties, which
require advanced data assimilation techniques (see e.g. [29] and references therein) and may
result in poor prediction outcomes.

In this paper, we focus on the basic Lightwill-Whitham-Richards (LWR) first order model [17,
22], augmented with random variables in the velocity function and the initial condition to ac-
count for real data uncertainty. This model is specifically designed to cope with the traffic data
set we were provided, which consists of floating car data coming from embedded GPS devices.
For alternative stochastic traffic flow models, we refer the reader to [4, 7, 14, 16, 23, 24, 27].

Several stochastic methods have been proposed in literature to evaluate uncertainty prop-
agation in stochastic PDE models. The so-called non-intrusive methods, like Monte Carlo or
stochastic collocation [18], allow to use the underlying deterministic code but suffer of slow
convergence rate and curse of dimensionality. On the other side, intrusive methods, like poly-
nomial chaos expansion [21], require deep modifications of the deterministic simulation code
and are not suitable for discontinuous solutions. In this work, we choose the semi-intrusive
approach proposed by Abgrall and Congedo [3]. The underlying idea is to extend the spatial
computational domain to the probabilistic components and to compute conditional expecta-
tions of the flux in the probabilistic direction. To evaluate the expectations of the flux, we
use a piecewise polynomial approximation computed using a reconstruction method. This
polynomial reconstruction is the same used for space finite volume methods, except that the
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measure is no longer the standard Lebesgue measure but the probabilistic one. Compared to
the above mentioned approaches, the Abgrall-Congedo method requires minor modification
of the deterministic code and ensure rapid convergence. It can be applied to any probability
distribution function, in case of correlated random variables and it is suitable to discontinuous
solutions.

We test the model against real data collected in the sector between Antibes and Nice of
the French highway A8, la Provençale. This section is very busy and is suitable to study con-
gested traffic. For this analysis, we rely on preliminary data treatment and model calibration
preformed in [6].

The paper is organized as follows. Section 2 describes the data set. In Section 3 we
recall the deterministic LWR model and the corresponding numerical scheme used later. In
Section 4 we introduce the stochastic setting and the random variables of interest. The semi-
intrusive approach is described and tested in Section 5. Section 6 is devoted to validation
against real data and conclusion and perspectives are presented in Section 7.

2 GPS data: a case study

The traffic data available for this research were provided by the company Autoroutes
Trafic [1] and they are presented and treated in [6, Section 4]. They correspond to a sector
of the French A8 highway, also called la Provençale, between the exit no. 45 (Antibes) and
the exit no. 49 (Nice St Isidore), for a total length of 17,5 km, see Figure 1a. In this study,
we will consider the direction from Antibes to Nice St Isidore, denoted as Direction 1.
Data were collected on four Tuesdays (March 19 and 26 and April 2 and 9, 2013) from 6 a.m.
to 11 a.m. and are divided into two categories: GPS data and magnetic loop detector data.
GPS data, supplied by Coyote embedded systems, include the device ID, the position and
the velocity of the car, sent every minute. In order to show the behaviour of data, in Figure
1b we report in a space-time plot the speeds registered on March 19. Loop detector data are

(a) The considered section of A8 highway, with
the location of the loop detectors (map data:
@2013 Google).
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(b) Scatterplot of GPS data of March 19th, taken from
[6].

Figure 1: The A8 highway between Antibes and Nice.
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supplied by the highway operator ESCOTA [2] at 16 locations and consist of hourly and 6
min flux averages. They will be used for the estimation of the real amount of cars travelling
on the considered section, see Section 4.2.

3 The deterministic LWR model

Macroscopic traffic flow models describe the evolution of the position of vehicles on a (infinite)
road identified with the real line in terms of averaged quantities, such as the density ρ = ρ(t, x),
t ∈ R+, x ∈ R and the average speed of cars v = v(t, x). The first model was introduces in
the mid ’50 by Lighthill, Whitham and Richards [17, 22] and it is based on the conservation
of the number of cars, which is expressed by the following scalar conservation law:

∂

∂t
ρ(x, t) +

∂

∂x
q(x, t) = 0, (3.1)

where q = ρv is the traffic flow. To close the equation, the LWR model assumes that v = v(ρ)
is a non-increasing function of the density. In this work, we will use a modified Newell-Daganzo
velocity function [9, 20], which is characterized by a linear decreasing free-flow speed and a
hyperbolic velocity in congested regime, and we add a downward jump at ρ = ρc to model
the capacity drop observed in real traffic (cf. Fig. 2):

v(ρ)

0 ρρc ρmax ρa

(a) Velocity function

q(ρ)

0 ρρc ρmax ρa

q(ρc−)

q(ρc+)

(b) Flux function

Figure 2: Fundamental diagram with capacity drop.

v(ρ) =


vmax

(
1− ρ

ρa

)
if 0 ≤ ρ ≤ ρc,

−ωf
(

1− ρmax
ρ

)
if ρc < ρ ≤ ρmax,

(3.2)

where vmax is the maximal free-flow speed, ωf is the backward propagating wave-speed, ρc
is the critical density (the limit density between the fluid and congested phases), ρmax is
the maximal density corresponding to a bumper-to-bumper situation and ρa is a further
parameter accounting for the capacity drop, so that

vmax

(
1− ρc

ρa

)
> −ωf

(
1− ρmax

ρc

)
. (3.3)
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This choice has shown to best fit our data, as results from [6].
Approximate solutions to (3.1) can be computed via Godunov finite volume method [13],

which is equivalent to the supply-demand method (or Cell Transmission Model) used by the
transportation engineers [9, 11, 15].

Let ∆x and ∆t be respectively the space and time grid sizes, xi = i∆x, i ∈ Z, be the grid
points and Ci = [xi−1/2, xi+1/2[ the space mesh cells. We aim at constructing approximate
solutions

ρ∆(t, x) := ρni for (t, x) ∈ [tn, tn+1[×[xi−1/2, xi+1/2[, i ∈ Z, n ∈ N.

In order to iteratively define ρ∆, the demand and supply functions are usually defined respec-
tively as

D(ρ) =

{
q(ρ) if 0 ≤ ρ ≤ ρc,
q(ρc) if ρc < ρ ≤ ρmax,

S(ρ) =

{
q(ρc) if 0 ≤ ρ ≤ ρc,
q(ρ) if ρc < ρ ≤ ρmax.

In the case of a discontinuous flux function, the above definitions are modified as follow [28]:

if ρi < ρc D(ρi) = min{q(ρi), q(ρc+)},
if ρi > ρc D(ρi) = q(ρc−),
if ρi = ρc if ρi+1 < ρc, D(ρi) = q(ρc−),

if ρi+1 > ρc, D(ρi) = q(ρc+),
if ρi+1 < ρc S(ρi+1) = q(ρc−),
if ρi+1 > ρc S(ρi+1) = q(ρi+1),
if ρi+1 = ρc ` = min {l : l > i+ 1 < l and ρl 6= ρc} ,

if ρ` < ρc, S(ρi+1) = q(ρc−),
if ρ` > ρc, S(ρi+1) = q(ρc+),
if 6 ∃`, S(ρi+1) = q(ρc−),

if ρi = ρi+1 = ρc D(ρi) = S(ρi+1),

(3.4)

where q(ρc±) denote the left and right traces of q at ρc.
The Godunov numerical flux at the interface xi+1/2 is then defined by

hG(ρi, ρi+1) = min {D(ρi), S(ρi+1)} , (3.5)

and the recursive numerical scheme is given by

ρn+1
i = ρni −

∆t

∆x

(
hG(ρni , ρ

n
i+1)− hG(ρni−1, ρ

n
i )
)
, i ∈ Z, n ∈ N, (3.6)

under the classical CFL condition
∆t λn ≤ ∆x,

where λn is the maximum of the absolute values of wave speeds at time tn, see [28, Section
5] for more details. The scheme (3.6) is initialized taking

ρ0
i =

1

∆x

∫ xi+1/2

xi−1/2

ρ0(x) dx, i ∈ Z,

for a given initial datum ρ0 : R→ [0, ρmax].
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4 Stochastic scalar conservation laws

Following [18, 19, 26], we will consider N = 2 independent random variables X := {X1, X2}
defined on a probability space P = (Ω,BΩ, µ), where ω := (ω1, . . . , ωs) ∈ Ω := Πs

i=1[ai, bi]
is the sample space of random parameters, BΩ is the σ-algebra of the Borel sets on Ω and
µ the Lebesgue measure. We assume that Xi : Ω → R is measurable and we denote by
fXi : R → R+ its probability density function. Since the variable are independent, their
cumulative distribution is given by fX(x1, x2) = fX1(x1)fX2(x2). Hence, for any measurable
real valued function g, its expected value is given by

E[g(X)] =

∫
Ω
g(X(ω))fX(X(ω)) dX(ω) =

∫ +∞

−∞

∫ +∞

−∞
g(x1, x2)fX(x1, x2) dx1 dx2.

We are interested in the stochastic Cauchy problem
∂

∂t
ρ(t, x, ω) +

∂

∂x
F (ρ(t, x, ω);X1(ω)) = 0, t > t0, x ∈ R, ω ∈ Ω,

ρ(t0, x, ω) = ρ0(x;X2(ω)),
(4.1)

where F = F (·;X1(·)) : (Ω,BΩ) → (L∞(R;R);B(L∞(R;R))) is the stochastic flux function
and ρ0 = ρ0(·;X2(·)) : (Ω,BΩ) →

(
L1(R;R);B(L1(R,R))

)
the stochastic initial condition.

Since we are led to consider flux functions with jump discontinuity in ρ, we refer to the
corresponding theory [5, 10, 12]. Let us assume that F (ρ;X) := F−(ρ;X) + (F+(ρ;X) −
F−(ρ;X))H(ρ− ρc), where H denotes the Heaviside function and H̃ denotes the multivalued
extension of H (H̃(0) ∈ [0, 1]). We say that F is jump continuous at ρc if the left and right
limits at ρ = ρc exist and are finite.

Definition 4.1. (Adapted from [19, Definition 3.2]) A measurable mapping ρ : (Ω,BΩ)→
C
(
Rt>t0 ;L1(R;R)

)
is a random entropy solution of (4.1) if

• For µ-a.e. ω ∈ Ω, it satisfies∫ +∞

t0

∫ +∞

−∞

(
ρ(t, x, ω)

∂

∂t
φ(t, x) + F (ρ(t, x, ω);X1(ω))

∂

∂x
φ(t, x)

)
dx dt

+

∫ +∞

−∞
ρ0(x;X2(ω))φ(t0, x) dx = 0

for all test functions φ ∈ C1
c ([t0,+∞[×R;R).

• For µ-a.e. ω ∈ Ω and for each convex entropy η ∈ C1(R;R), there exists a function
w ∈ L∞(R+ × R; [0, 1]) such that w(t, x) ∈ H̃(ρ(t, x, ω)) a. e., it holds∫ +∞

t0

∫ +∞

−∞

(
η(ρ(t, x, ω))

∂

∂t
φ(t, x) +Q(ρ(t, x, ω);X1(ω))

∂

∂x
φ(t, x) + η′(ρc)

∂

∂x
w(t, x)

)
dx dt

+

∫ +∞

−∞
η(ρ0(x;X2(ω)))φ(t0, x) dx ≥ 0

for all test functions φ ∈ C1
c ([t0,+∞[×R;R+), where

Q(ρ;X) =

∫ ρ

0
η′(σ)

[
F ′−(σ;X) + (F ′+(σ;X)− F ′−(σ;X))H(σ − ρc)

]
dσ.

Well-posedness results for problem (4.1) in the case F ∈W 1,∞(R;R) can be found in [19,
Theorem 3.3] and [18, Theorem 3.11].

5



4.1 Random velocity

To account for vehicle speed variability, we consider a stochastic velocity function in the form

V (ρ;X1(ω)) = (1 +X1(ω))v(ρ), X1 ∈ [−1, 1], (4.2)

expressing the perturbation from the equilibrium velocity v. The distribution of the per-
turbation depends on several factors as, for instance, the drivers behavior and the weather
conditions. We use GPS real data to fit the distribution function. To this end, we plot speed
values against densities and we find a spline curve interpolating the medians, separating the
density domain in cells and computing the median speed of each spatial cell, see Figure 3.
We then compute the y-distance of each point from the spline and, in order to analyze the
normality of the distributions, we perform the QQ-plots (Figure 4) in congested and free flow
phases separately. Our goal is to apply a suitable perturbation to the velocity in order to
reproduce this deviation from a median value. Hence, we have to adjust the parameters of
the distribution of these perturbations. We compute the relative distances from the median
and we can see their distributions in Figure 5. Their standard deviations are respectively
0.12 and 0.23. For simplification purposes, we will use the same perturbation for free-flow
and congested conditions. We take σ = 0.2, which corresponds to the normal distribution
law N(µ=0,σ=0.2). Since we need a distribution with bounded domain, we replace the normal
distribution by a triangular law T[−0.5,0,0.5], which still has standard deviation equal to 0.2.
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Figure 3: Speed-density fundamental diagram and fitted mean (least squares).

4.2 Random initial datum

The second random variable we consider is a perturbation applied to the initial condition to
compensate for the lack of information on the penetration rate of GPS data. In our specific
case, the amount of equipped vehicles represents only a little percentage of the total volume
of traffic. Its variation depends on the time of the day and, indirectly, on traffic density.
To estimate the percentage of equipped vehicles compared to the total traffic density, we
use the corresponding real flux measurements obtained by some magnetic loop detectors. In
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Figure 4: QQ-plots of speed values.
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Figure 5: Densities of relative distance from the median

particular, we consider measurements taken at km 180, in the direction west-est (Antibes
to Nice), and we compare them with the GPS data at the same time and location, see
Figure 6. Percentages per hour and per day are collected in Table 1. We can observe that
the penetration rate of GPS-equippend vehicles has the same pattern every day: early in the
morning the percentage of cars equipped with a Coyote system is very low (0.9-1.4%), then
it starts growing until it reaches the maximum between 9 and 10 a.m. (2.3-3%). Finally it
starts decreasing again. This is probably due to the fact that Coyote systems are mainly
used by some specific categories of people such as taxi or truck drivers. Taking a least

Day 6-7 a.m. 7-8 a.m. 8-9 a.m. 9-10 a.m. 10-11 a.m.

1 1.38 % 1.73 % 2.66 % 2.95 % 2.91 %
2 1.36 % 1.74 % 2.31 % 3.00 % 2.28 %
3 0.88 % 1.70 % 2.30 % 2.30 % 2.18 %
4 1.12 % 1.70 % 2.61 % 2.60 % 2.14 %

Table 1: Incoming flux percentage. Km 180, direction 1. Taken from [6].
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Figure 6: Loop detectors data (6 minutes average, green) and GPS data (blue). March 19, direction
1, km 180.

square interpolation of the percentages of equipped vehicles (Fig. 7a ), we obtain rescaled
values (Fig. 7b) and we can analyze how the GPS flux varies with respect to the real flux
and, consequently, estimate the uncertainty. We firstly compute the rescaled GPS data as
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Figure 7: March 19, direction 1, km 180.

a function of the flux. Since we know when traffic at km 180 is in free or congested flow
condition, we can distinguish the flux values (Fig. 8a) and compute the corresponding density
through the inverse of the flux function. We eventually compute the relative error as the
difference between two fluxes divided by the real one and we can model the perturbation on
the initial density as an exponential function of the density multiplied by a random variable
X2:

ρ(x;ω) = ρ(x) [1 + β X2(ω) exp(−α ρ(x))] , (4.3)
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Figure 8: Uncertainty quantification on density values.

where α and β are positive parameters. Fitting the real data, we can set α and β to model
the maximal perturbation. Therefore we can find quite easily an exponential function that
contains all the data (Fig. 8b). We set the first constraint as a perturbation of 100% in ρ = 0,
which implies β = 1, and the second one as a perturbation of 60% in ρc. Therefore we use

β = 1, α = − ln(0.6/β)

ρc
.

We consider a uniform distribution fX2 = U[−1,1]. Remark that this choice ensures that the
density does not attain negative values.

4.3 A stochastic LWR model for uncertainty quatification in GPS data

We are thus led to consider problem (4.1)

F (ρ;X1(ω)) := ρV (ρ;X1(ω)) = (1 +X1(ω))ρv(ρ), fX1 = T[−0.5,0,0.5] (4.4)

and
ρ0(x;X2(ω)) := ρ(t0, x) [1 + β X2(ω) exp(−α ρ(t0, x))] , fX2 = U[−1,1],

where ρ(t0, x) is the density reconstructed from data at time t = t0, see Section 6.1. In the
next sections, we will explain how to estimate the space-time evolution of statistical moments
for the above model, and compare the results to our data set.

5 Numerical scheme

We aim at computing approximate solutions ρ∆(ω) of (4.1) by an iterative procedure ρn+1
∆ (ω) =

H(ρn∆(ω)). Following [3], besides the space and time discretization introduced in Section 3,
we introduce a partition of the probability space Ω ⊂ Rs, i.e. a set of Ωj , j = 1, ..., N , of
mutually independent subsets covering Ω:

µ(Ωj ∩ Ωl) = 0 for any j 6= l, Ω = ∪Nj=1Ωj .
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We look for approximate solutions of the form

ρ∆(t, x, ω) := ρni,j for (t, x, ω) ∈ [tn, tn+1[×[xi−1/2, xi+1/2[×Ωj , i ∈ Z, n ∈ N, j = 1, ..., N.

For every Ωj , its probability measure is

µ(Ωj) =

∫
Ωj

dµ =

∫
Ωj

fX(X(ω)) dX(ω) ≥ 0.

Therefore, we want to approximate the solution of (4.1) by the conditional expectation

E[ρn+1
∆ |Ωj ] :=

1

µ(Ωj)

∫
Ωj

ρn+1
∆ (ω) dµ = E[H(ρn∆|Ωj)]. (5.1)

Once the conditional expectation is computed, the mean and the variance of ρ∆(ω) on the
cell Ci at time tn are given by

µ̄ni =
∑
j

µ(Ωj)E[ρn∆|Ωj ] =
∑
j

ρni,j , V arni =
∑
j

∫
Ωj

(ρ∆(tn, xi, ω)− µ̄ni )2 dµ =
∑
j

µ(Ωj)
(
ρni,j − µ̄ni

)2
.

Since the operatorH is nonlinear, we need to compute the conditional expectation E[g(X)]
of a function evaluation g(X) in Ωj , given the conditional expectations E[X|Ωj ].
For each Ωj , we wish to find a polynomial Pj ∈ Pp(Rs) of degree p, defined on a stencil Sj ,
i.e. a set Sj = {Ωk}k∈Ik with Ωj ∈ Sj , such that

E[X|Ωk] =
1

µ(Ωk)

∫
Rs

1Ωk(ω)Pj(ω) dµ for Ωk ∈ Sj . (5.2)

This means that the conditional expectation of the reconstructed polynomial Pj is equal to
the conditional expectation of X in each Ωk of the stencil. Once this polynomial Pj is known,
we can estimate

E[g(X)] ≈
∑
k

∫
Ωk

g(Pj(ω)) dµ

by using a quadrature formula in each Ωk.
We focus now on the case of a one-dimensional probability space Ω ⊂ R, the two-

dimensional framework being a straightforward generalization.
The Godunov scheme (3.5)–(3.6) applied to (4.1) gives

ρn+1
i,j = ρni,j −

∆t

∆x

(
E[hG(ρni , ρ

n
i+1)|Ωj ]− E[hG(ρni−1, ρ

n
i )|Ωj ]

)
. (5.3)

As we said before, the expectation of the numerical flux can be approximated as

E[hG(ρni , ρ
n
i+1)|Ωj ] ≈

1

µ(Ωj)

∫
Ωj

hG(Pni,j(ω), Pni+1,j(ω)) dµ, (5.4)

where Pi,j is a piecewise polynomial reconstruction of the density in the geometric cell Ci and
probabilistic cell Ωj and computed on the stencil Sj .

In order to compute the integral (5.4), we use the third order Gaussian quadrature:∫ b

a
h(ω)dω ≈ b− a

2
(h(ξ1) + h(ξ2)) , (5.5)
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where

ξ1 =
a+ b

2
− b− a

2

√
3

3
and ξ2 =

a+ b

2
+
b− a

2

√
3

3
. (5.6)

Therefore, the integral (5.4) can be computed as:∫
Ωj

hG(Pni,j(ω), Pni+1,j(ω)) fX(X(ω)) dX(ω)

≈ µ(Ωj)

2

(
hG(Pni,j(ξ1), Pni+1,j(ξ1))fX(X(ξ1)) + F (Pni,j(ξ2), Pni+1,j(ξ2))fX(X(ξ2))

)
.

The most important step is computing the polynomial reconstruction, which defines the
order of the method. For any cell Ωj , we define a polynomial Pj ∈ Pp(R) of degree p,
described by a stencil Sj = {Ωj ,Ωj1 , ...,Ωjp}, where j1, ..., jp 6= j. Since in the space variable
we use a first order finite volume method, we expect that the convergence order will not change
increasing the order of the polynomial in the probability space. We will test the approach with
a piecewise constant and piecewise linear interpolations (using a MUSCL scheme), analyzing
the convergence orders.

• p = 0: first order reconstruction. We take Sj = {Ωj} and constant polynomials.

• p = 1: ENO second order reconstruction. We evaluate two linear polynomials,
and take the least oscillatory one. We introduce the average mid-points

ωl = E[ξ|Ωl].

For the cell Ωj , we define two polynomials of degree 1: p−j is constructed using the cells

Ωj−1 and Ωj and p+
j is defined on Ωj and Ωj+1. For p+

j we have:

p+
i,j(ω) = a+

i,j

(
ω − ωj

ωj+1 − ωj

)
+ b+i,j , (5.7)

such that

E[p+
i,j |Ωj ] = E[ρni,j |Ωj ] and E[p+

i,j |Ωj+1] = E[ρni,j+1|Ωj+1].

Since E[x− ωj |Ωj ] = 0 by definition of ωj , we obtain the 2× 2 system(
1 0
1 1

)(
b+i,j
a+
i,j

)
=

(
E(ρni,j |Ωj)

E(ρni,j+1|Ωj+1)

)
. (5.8)

and similarly forl p−i,j(ω) = a−i,j
ω − ωj

ωj+1 − ωj
+ b−i,j . From (5.7) and (5.8), we recover

p+
i,j(ω) =

(
E(ρni,j+1|Ωj+1)− E(ρni,j |Ωj)

)( ω − ωj
ωj+1 − ωj

)
+ E(ρni,j |Ωj),

p−i,j(ω) =
(
E(ρni,j |Ωj)− E(ρni,j−1|Ωj−1)

)( ω − ωj−1

ωj − ωj−1

)
+ E(ρni,j−1|Ωj−1).

We choose Pni,j equal to the one that realizes the least oscillation: min
{∣∣∣E(ρni,j+1|Ωj+1)− E(ρni,j |Ωj)

∣∣∣, ∣∣∣E(ρni,j |Ωj)− E(ρni,j−1|Ωj−1)
∣∣∣}.

The procedure is summarized in Algorithm 1.
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5.1 Numerical tests

To validate the approach, we show some results concerning the stochastic conservation law (4.1)
with random flux function (4.4) without capacity drop and piece-wise constant (determinis-
tic) initial datum ρ0(x) = ρL = 10 for x < x0 and ρ0(x) = ρR = 80 for x > x0, x0 = 0.5. In
this case the mean and the variance can be computed analytically: for each realization of the
random variable, the solution is given by a shock wave moving with speed

σ(ρL, ρR;ω) = (1 +X1(ω))
ρLv(ρL)− ρRv(ρR)

ρL − ρR
,

and we deduce

µ̄(t, x) =

∫ x−x0
σ(ρL,ρR;ω)t

−1

−∞
ρLfX1(y) dy +

∫ +∞

x−x0
σ(ρL,ρR;ω)t

−1
ρRfX1(y) dy,

V ar(t, x) =

∫ x−x0
σ(ρL,ρR;ω)t

−1

−∞
(ρL − µ̄(t, x))2fX1(y) dy +

∫ +∞

x−x0
σ(ρL,ρR;ω)t

−1
(ρR − µ̄(t, x))2fX1(y) dy.

We consider both uniform and triangular probability distributions and the piece-wise constant
and ENO polynomial reconstructions described above, which give similar results. Figures 9
and 10 show the results obtained with the ENO reconstruction for ∆x = 0.01 and ∆x = 0.002
respectively, and N = 40 probabilistic cells in [−1, 1].
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Figure 9: Deterministic solution (red), analytic (green) and computed (blue) mean and standard
deviation for ∆x = 0.01.

To analyze the L1-convergence for the two polynomial reconstructions, we denote by µ̄∆

and µ̄ respectively the means computed by the semi-intrusive method and analytically. We
then keep fixed the space mesh, while refining the probabilistic discretization, and compute
the error

err(∆) = ‖µ̄∆ − µ̄‖L1 .

Figure 11a shows that the errors corresponding to the first and second order interpolations are
very close, since they are conditioned by the first order spatial approximation. Figure 11b dis-
plays the probabilistic convergence curves for N = 2, . . . , 210, corresponding to different space
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Figure 10: Deterministic solution (red), analytic (green) and computed (blue) mean and standard
deviation for ∆x = 0.002.
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Figure 11: Convergence analysis in the probabilistic direction.

mesh sizes ∆x = 2−n10−2, n = 1, . . . , 4. This confirms that if the probabilistic discretization
is fine enough, the main contribution comes from the spatial error.

To evaluate the computing time, we compare the Abgrall-Congedo approach using a piece-
wise constant polynomial reconstruction of the density with the Monte Carlo method. Fig-
ure 12 plots the time as a function of the L1-error, for ∆x = 0.001 and a triangular distribu-
tion T[−0.5,0,0.5] for the speed perturbation. We remark that the Abgrall-Congedo approach
is significantly faster than Monte Carlo. See also Table 2.
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Figure 12: Computing time for a Riemann
problem with Nx = 1000.

A-C MC

Time Error Time error

3.2 0.40 19.3 0.40

3.5 0.28 37.6 0.31

3.7 0.20 55.9 0.37

3.9 0.15 112.0 0.16

Table 2: Computing times for Abgrall-Congedo ap-
proach and Monte Carlo.

6 Uncertainty quantification in traffic flow simulations

6.1 Model calibration

We calibrate the fundamental diagram following [6, Section 5]. In particular, for the section
around km 180 in direction 1, we take vmax = 125 km/h, ωf = 17 km/h, ρmax = 614
vehicles/km, ρc = 120 vehicles/km and ρa = 300 vehicles/km.

To estimate the initial conditions at some fixed time t0 ≥ 6 : 00 am, for every space cell
Ci, we consider a weighted average of the data measured in the hour preceding time t0, with
an exponentially decreasing weight (for more details see [6, 8]):

αi(tk, t0) =


0 if t0 − tk < 0,

e

(tk − t0)

a if 0 ≤ t0 − tk < 60,

0 if t0 − tk ≥ 60.

(6.1)

Then, as initial condition, we compute ρt0i as

ρt0i :=
1

n∑
k=0

αi(tk, t0)

n∑
k=0

αi(tk, t0) ρdatai (tk) , (6.2)

where ρdatai (tk) is the density measured in cell Ci at time tk. The coefficient a depends on
the reliability of the data and on the variability of the traffic in the hour before t0. After
some tests, we decided to fix a ∈ [1.5, 2] to give more importance at data close to t0 and we
increase it if we need to consider a longer period.

To avoid dealing with boundary conditions, we run simulations on a larger space domain
so that information coming from upstream and downstream boundaries do not reach the
domain of interest.
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6.2 Uncertainty on the mean velocity

For the speed uncertainty, we use the Abgrall-Congedo approach using piece-wise constant
polynomials. The triangular distribution T[−0.5,0,0.5] is discretized in 20 cells and we set t0 =
9:00 am. We remark that when a constant interpolation is used, the approach is not very
different from Monte Carlo methods, but the computational time is drastically reduced, see
Section 5.1. We plot the speed evolution for X1 = 0 in Fig. 13a and the mean and standard
deviations in Fig. 13b. In both cases, we compare the simulation results with the real values.
We observe that the results of the simulation fit the behavior of the actual data and most of
the values fall in the standard deviation range.
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(a) Antibes to Saint-Laurent-du-Var April 2, 2013, 9 - 9:30am: speed simulation results (left) VS real
data (right).
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(b) Computed mean speed ± standard deviation (red) and real data (blue) at t0 + 15 and t0 + 30.

Figure 13: Speed uncertainty.

6.3 Uncertainty on the initial condition

We analyze here the influence of a perturbation on the initial density. The goal is to find
the variance corresponding to the actual variability due to the lack of data. Unfortunately,
we saw in Section 4.2 that our data cover only a very low percentage of the actual values.
Consequently, when we fit the variability, we found a non-linear perturbation which has
high values. This implies a loss of significance in our model. Actually, when we apply the
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perturbation to a real case (we use the above-mentioned example), we can notice that the
standard deviation dramatically increases (Fig. 14).
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Figure 14: Initial density uncertainty.

6.4 Complete uncertainty estimation

Considering both speed and initial data uncertainties in the model, we have to deal with
a two dimensional probability space. Following Section 4.3, we note ω1 ∈ Ω1 = ∪jΩ1

j the

speed random parameter and ω2 ∈ Ω2 = ∪lΩ2
l the initial density one, and assume they are

independent. Using Algorithm 1, we define

µ̄ni =
∑
j,l

ρni,j,l µ1(Ω1
j )µ2Ω2

l )

and
µ̄ni,j =

∑
l

ρni,j,l µ2(Ω2
l ), µ̄ni,l =

∑
j

ρni,j,l µ1(Ω1
j ),

respectively

V arni,j =
∑
l

(
ρni,j,l − µ̄ni,j

)2
µ2(Ω2

l ), V arni,l =
∑
j

(
ρni,j,l − µ̄ni,l

)2
µ1(Ω1

j ).
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Remark that, by the law of total variance, we can compute

V arni =
∑
j,l

(ρni,j,l)
2 µ1(Ω1

j )µ2(Ω2
l )− (µ̄ni )2

=
∑
l

µ2(Ω2
l )
∑
j

(
ρni,j,l − µ̄ni,l

)2
µ1(Ω1

j ) +
∑
l

(
µ̄ni,l − µni

)2
µ̄2(Ω2

l )

= Mean(V arni,l) + V ar(µ̄ni,l).

We report in Figure 15 the approximated mean and standard deviation corresponding to
the section between Antibes and Saint-Laurent-du-Var on April 2, 2013, 9 - 9:30 am. We
observe that the standard deviation is very close to the previous case in Section 6.3, where
only the initial density perturbation was considered. This can be explained by the fact that,
in our specific case, the information on density is poor and the variability of the initial datum
is very large.
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Figure 15: Speed and initial density uncertainties. Computed mean speed ± standard deviation
(red) and real data (blue) at t0 + 15 and t0 + 30.

6.5 Travel time estimation

Uncertainty quantification can be extended to travel time predictions. Since each car in the
data set has an identification label, we know the time needed to cover a certain distance.
Besides, numerical simulations allow us to compute travel times from mean velocities, and
their mean and standard deviation. We report in the following figures the travel times in
a space-time plot: in red the trajectory of a selected vehicle in the data set, in blue the
computed mean and in green the computed mean ± its standard deviation. We observe that
the forecasts are good when the traffic is in free flow or congested, see Figures 16 and 17.
On the contrary, when traffic conditions change, like in Figure 18, initial conditions are not
sufficient to have good results and information about boundary inflow and outflow become
essential.

7 Conclusion

In this paper, we have proposed a stochastic macroscopic traffic flow model accounting for
GPS data uncertainty. We used an efficient semi-intrusive numerical method to evaluate
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Figure 16: Space-time plots of computed mean travel (blue) ± st.deviation (green) and actual travel
(red) when the traffic is in free-flow.
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Figure 17: Space-time plots of computed travel (blue) ± st.deviation (green) and actual travel (red)
when the traffic is congested.

uncertainty propagation in traffic simulations and we tested the results against real data
collected on a busy sector of the French A8 highway close to Nice. The results are quite
satisfactory, in particular when traffic does not change phase. From the application point
of view, these preliminary results can be improved considering higher order finite volume
methods for the spatial discretization, and taking into account boundary conditions and their
uncertainty. Besides, well-posedness of stochastic conservation laws with discontinuous flux
function needs to be investigated.
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Supplementary

Semi-intrusive deterministic algorithm

while t < T : Deterministic loop on time: do
t = t+ ∆t
for i:=1 to size(ρ) : Deterministic loop on space: do

for j:=1 to size(Ω) : Probabilistic loop: do
Calculate a+

i,j , a
−
i,j , b

+
i,j , b

−
i,j ;

Calculate polynomial pi,j evaluated in ξ1 and ξ2 that satisfies

min
{∣∣∣a+

i,j

∣∣∣, ∣∣∣a−i,j∣∣∣};

for ω := ξ1, ξ2: Quadrature loop: do
Compute Godunov flux approximations as function of ω:

hG(Pni,j(ω), Pni+1,j(ω)) and hG(Pni−1,j(ω), Pni,j(ω));

end

Compute expectancies E
[
hG(ρni,j , ρ

n
i+1,j)|Ωj

]
using quadrature formula;

Update values

ρn+1
i,j = ρni,j −

∆t

∆x

(
E
[
hG(ρni,j , ρ

n
i+1,j)|Ωj

]
− E

[
hG(ρni−1,j , ρ

n
i,j)|Ωj

])
;

end

end

end
Algorithm 1: Semi-intrusive method
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