Hypocoercivity and sub-exponential local equilibria - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Hypocoercivity and sub-exponential local equilibria

Résumé

Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equation obtained in the diffusion limit. The method applies to Fokker-Planck and scattering collision operators. The main tools are a weighted Poincaré inequality (in the Fokker-Planck case) and norms with various weights. The advantage of weighted Poincaré inequalities compared to the more classical weak Poincaré inequalities is that the description of the convergence rates to the local equilibrium does not require extra regularity assumptions to cover the transition from super-exponential and exponential local equilibria to sub-exponential local equilibria.
Fichier principal
Vignette du fichier
BDLS-Sub-exponential-7.pdf (297.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02377195 , version 1 (23-11-2019)
hal-02377195 , version 2 (07-12-2019)

Identifiants

Citer

Emeric Bouin, Jean Dolbeault, Laurent Lafleche, Christian Schmeiser. Hypocoercivity and sub-exponential local equilibria. 2019. ⟨hal-02377195v1⟩
191 Consultations
172 Téléchargements

Altmetric

Partager

More