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HYPOCOERCIVITY AND SUB-EXPONENTIAL LOCAL

EQUILIBRIA

E. BOUIN, J. DOLBEAULT, L. LAFLECHE, C. SCHMEISER

Abstract. Hypocoercivity methods are applied to linear kinetic equations without

any space confinement, when local equilibria have a sub-exponential decay. By Nash

type estimates, global rates of decay are obtained, which reflect the behavior of the

heat equation obtained in the diffusion limit. The method applies to Fokker-Planck

and scattering collision operators. The main tools are a weighted Poincaré inequal-

ity (in the Fokker-Planck case) and norms with various weights. The advantage of

weighted Poincaré inequalities compared to the more classical weak Poincaré inequal-

ities is that the description of the convergence rates to the local equilibrium does not

require extra regularity assumptions to cover the transition from super-exponential

and exponential local equilibria to sub-exponential local equilibria.

1. Introduction

This paper is devoted a hypocoercivity method designed for obtaining decay rates

in weighted L2 norms of the solution to the Cauchy problem




∂tf + v · ∇xf = Lf ,

f(0, x, v) = f in(x, v) ,
(1)

for a distribution function f(t, x, v), with position x ∈ R
d, velocity v ∈ R

d, and time

t ≥ 0. The collision operator L acts only on the velocity variable and it is assumed to

be such that its null space is spanned by a local equilibrium F . Let e(v) := − logF (v)

and assume that the limit

α = lim
|v|→+∞

log e(v)

log |v|
exists. Sub-exponential, exponential or super-exponential local equilibria correspond

respectively to the cases α ∈ (0, 1), α = 1 and α > 1. In particular Gaussian local

equilibria enter in the special case α = 2, but notice that there are other equilibria

with α = 2, for instance, the ones obtained in Fermi-Dirac statistics. In this paper, we

study specifically the sub-exponential case, with F (v) = Cα exp(−(1 + |v|2)α/2 ) and

α ∈ (0, 1).
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With no loss of generality, we can assume that F is nonnegative and of mass 1. We

denote the measure associated with the inverse of the local equilibrium by

dµ(v) := F (v)−1 dv .

We have in mind two linear collision operators: the Fokker-Planck operator

L1f = ∇v ·
(
F ∇v

(
F−1 f

))

and a scattering collision operator

L2f =
∫

Rd
b(·, v′)

(
f(v′)F (·) − f(·)F (v′)

)
dv′ .

Under assumptions on the cross-section b that will be given later and for a special

choice of F in the Fokker-Planck case, these two operators L1 and L2 are responsible

for the same asymptotic behavior. The operator L1 is a local operator with sharp

estimates, while L2 is non-local but less restrictive in terms of local equilibria and of

wider interest for applications in modeling in physics. Estimates for L2 are however

not as tight as for L1.

Our purpose is to consider a solution of (1) with a non-negative initial datum f in

and study its large time behavior. If f in has finite mass, then mass is conserved for any

t ≥ 0. Since there is no stationary state with finite mass, it is expected that f(t, ·, ·)
locally vanishes as t → +∞. In order to state a result, we need some notations and

a few additional assumptions. We shall denote by 1Ω the characteristic function of a

domain Ω, by Id the identity operator and define

〈v〉 :=
√

1 + |v|2 .
Let us consider the norms

‖f‖k =
(∫∫

Rd×Rd
|f |2 〈v〉k dx dµ

)1/2

and ‖f‖ = ‖f‖0 .

We also define on L2(dx dµ) the scalar product 〈f1, f2〉 :=
∫∫

Rd×Rd f1 f2 dx dµ such that

‖f‖2 = 〈f, f〉. With these notations in hand, we can list our hypotheses. We first

assume local mass conservation ∫

Rd
Lf dv = 0 .

Such a property is always granted if L = L1 and holds when L = L2 if b satisfies
∫

Rd

(
b(v, v′) − b(v′, v)

)
F ′ dv′ = 0 (H1)

where F ′ stands for F (v′). Notice that micro-reversibility, i.e., the symmetry of b, is

not required. Next, we assume that the cross-section b takes nonnegative values and
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is such that the collision frequency ν verifies

ν(v) :=
∫

Rd
b(v, v′)F ′ dv′ = B(v) |v|−β (H2)

for some β > 0 and for some positive, continuous function B such that

lim
|v|→∞

B(v) = 1 .

If L = L2, we shall assume that there exists a finite positive constant C such that

∀h ∈ L2(Rd, dµ) ,
∫

Rd

∣∣∣h− h̃
∣∣∣
2
ν F dv ≤ C

∫∫

Rd×Rd
b(v, v′)

∣∣∣h′ − h
∣∣∣
2
F F ′ dv dv′ (2)

where h̃ =
∫
Rd h dµ. Sufficient conditions on b can be found for instance in [7, Propo-

sition 2.2] or in [15, Lemma 1]. Notice that a Cauchy-Schwarz inequality yields

∫

Rd

∣∣∣h− h̃
∣∣∣
2
ν F dv =

∫

Rd

∣∣∣∣
∫

Rd

(
h− h′

)
F ′ dv′

∣∣∣∣
2

ν F dv

≤
∫

Rd

F ′

ν ′
dv′

∫∫

Rd×Rd

∣∣∣h− h′
∣∣∣
2
ν ν ′ F dv F ′ dv′

so that (2) is obtained by assuming

sup
(v,v′)∈Rd×Rd

ν(v) ν(v′)

b(v, v′)

∫

Rd

F ′

ν ′
dv′ < ∞ . (H3)

Notice that condition (H3) does not require the local integrability of b. Other sufficient

conditions for (2) can be found in [15]. We shall additionally assume that b satisfies
∥∥∥∥
∫

Rd
b(v, v′)

(
v′ − v

)
F F ′ dv′

∥∥∥∥
L2(〈v〉β dµ)

< ∞

and Cb := sup
v∈Rd

∫

Rd

b(v′, v)2

ν(v)2
F ′ dv′ < ∞ . (H4)

So far we did not make any assumption on the local equilibrium F . If we assume

that L = L1 and consider the so-called homogenous case f(t, x, v) = g(t, v) in which the

distribution function is independent of x, then (1) is reduced to a simple Fokker-Planck

equation and by a standard computation, we have that

d

dt

∫

Rd
|g − g|2 dµ = − 2

∫

Rd

∣∣∣∇v

(
F−1 g

)∣∣∣
2
F 2 dµ (3)

where g := (
∫
Rd g F dµ)F = (

∫
Rd g dv)F . To fix ideas, let us assume that

∀ v ∈ R
d, F (v) = Cα e

−〈v〉α

(4)

where Cα is a normalisation constant such that F is a probability density. If α ≥ 1,

it is easy to conclude using the Poincaré inequality

∀ g ∈ D(Rd) ,
∫

Rd

∣∣∣∇v

(
F−1 g

)∣∣∣
2
F 2 dµ ≤ λ

∫

Rd
|g − g|2 dµ ,
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for some positive constant λ and deduce that
∫
Rd |g − g|2 dµ is decaying at an expo-

nential rate. In this paper, we are interested in the regime of sub-exponential local

equilibria corresponding to

α ∈ (0, 1) . (5)

In this range (5), we rely on the weighted Poincaré inequality

∀ g ∈ D(Rd) ,
∫

Rd

∣∣∣∇v

(
F−1 g

)∣∣∣
2
F 2 dµ ≥ C

∫

Rd
|g − g|2 〈v〉−2 (1−α) dµ . (6)

There is now a weight in the right-hand side, although we still define the average as

g := (
∫
Rd g dv)F (i.e., the definition of g does not involve the weight 〈v〉−2 (1−α)): see

Appendix A for details). Under appropriate conditions on the initial data, inequal-

ity (6) is enough to obtain that
∫
Rd |g − g|2 dµ has an algebraic decay rate. For such

a problem, estimates based on weak Poincaré inequalities are also very popular in the

scientific community of semi-group theory and Markov processes (see [20], [3, Proposi-

tion 7.5.10], [13] and Appendix B), but with the inconvenient that a uniform estimate

of the solution is needed. Estimates based on weak Poincaré inequalities rely on a

uniform bound for α < 1 which is not present for α ≥ 1, while the approach developed

in this paper only uses weighted L2 norms with weights that vanish as α → 1−.

In the Fokker-Planck case L = L1, let us choose β = 2 (1 − α) in order to provide

unified statements. This choice arises from (6). In the case of the scattering operator

L = L2, notice that α can be chosen independently of β and that we can even consider

more general local equilibria. However, as a simplifying assumption, we shall assume

in both cases that F is a sub-exponential equilibrium given by (4) with α such that (5)

holds. At least in the Fokker-Planck case, we can state a result for α ∈ (0, 1) which is

consistent with the known results when α ≥ 1, with no extra regularity assumption.

Our main result deals with the decay of a solution of (1) with finite mass in the

non-homogeneous case and goes as follows.

Theorem 1. Let α ∈ (0, 1), β > 0, k > 0 and let F be given by (4). Assume that

either L = L1 and β = 2 (1 − α), or L = L2 and (H1)–(H4) hold. There exists a

numerical constant C > 0 such that any solution f of (1) with initial datum f in ∈
L2(〈v〉k dx dµ) ∩ L1

+(dx dv) satisfies

∀ t ≥ 0 , ‖f(t, ·, ·)‖2 =
∫∫

Rd×Rd

∣∣∣f(t, x, v)
∣∣∣
2

dx dµ ≤ C ‖f in‖2

(1 + κ t) ζ

with rate ζ = min {d/2, k/β}, for some positive κ which is an explicit function of the

two quotients, ‖f in‖ / ‖f in‖k and ‖f in‖L1(dx dv) / ‖f in‖.

If k ≥ d β/2, we recover the rate of decay of the heat equation as in the case α ≥ 1.

When L = L1 and α ∈ (0, 1), this condition means k ≥ d (1−α) and it is automatically

fulfilled for a given k > 0 when α approaches 1. With α = 1, (6) is indeed the
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usual Poincaré inequality associated with the measure dµ. If k ∈ (0, d β/2), a new

limitation appears due to the lower rate of relaxation towards the local equilibrium:

see Appendix B for details. The condition k ≥ d β/2 makes sense because our L2

hypocoerciviy method is designed to capture the rate of the diffusion limit (which

corresponds to the homogeneous equation) as in [4, 10]: explanations will be given in

Appendix B.2. Our strategy of proof relies on the L2 hypocoercivity method as in [9,

10] and the extension of [4, 5] to the case without confinement in x. Among related

results, let us quote [13] with an approach based on the weak Poincaré inequality

in the homogeneous case and sub-exponential equilibria, and also [6] for Gaussian

local equilibria in presence of an external potential with sub-exponential growth in

the variable x.

This paper is organized as follows. In Section 2, we prove an hypocoercive estimate

which relates an entropy, which is equivalent to ‖f‖2, to an entropy production term

involving a microscopic and a macroscopic component. Using weighted L2 estimates

established in Section 3, we obtain a new control by the microscopic component in

Lemma 7 while the macroscopic component is estimated as in [4] using Nash’s inequal-

ity, see Lemma 6. By collecting these estimates in Section 4, we complete the proof

of Theorem 1. Two appendices are devoted to L = L1: in Appendix A we provide a

new proof of (6) and comment on the interplay with weak Poincaré inequalities, while

the homogenous case is dealt with in Appendix B and rates of relaxation towards the

local equilibrium are discussed using weighted L2 norms, as an alternative approach

to [13]. The main novelty of our approach is that we use new interpolations in order to

exploit the entropy production term. As a consequence, with the appropriate weights,

no other norm is needed than weighted L2 norms. For simplicity, we assume that the

distribution function is nonnegative but the extension to sign changing functions is

straightforward.

2. An entropy–entropy production estimate

We adapt the strategy of [10, 4]. Let Π be the orthogonal projection operator on

Ker(L) in L2(Rd, dµ), defined by

Πf := ρf F where ρf :=
∫

Rd
f dv .

To build a suitable Lyapunov functional, we introduce the operator

A :=
(
Id + (TΠ)∗(TΠ)

)−1
(TΠ)∗

and consider

H[f ] :=
1

2
‖f‖2 + δ 〈Af , f〉 .
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It is known from [10, Lemma 1] that, for any δ ∈ (0, 1), H[f ] and ‖f‖2 determine

equivalent norms, in the sense that

1

2
(1 − δ) ‖f‖2 ≤ H[f ] ≤ 1

2
(1 + δ) ‖f‖2 . (7)

A direct computation shows that

d

dt
H[f ] = − D[f ] (8)

with

D[f ] := − 〈Lf, f〉 + δ 〈ATΠf,Πf〉
+ δ 〈AT(Id − Π)f,Πf〉 − δ 〈TA(Id − Π)f, (Id − Π)f〉 − δ 〈AL(Id − Π)f,Πf〉

where we have used that 〈Af, Lf〉 = 0. As a consequence of (6) and (2), there is a

positive constant C such that

〈Lf, f〉 ≤ − C ‖(Id − Π)f‖2
−β . (9)

Proposition 2. Under the assumptions of Theorem 1, there exists κ > 0 such that,

for any f ∈ L2
(
〈v〉−β dx dµ

)
∩ L1(dx dv),

D[f ] ≥ κ
(
‖(Id − Π)f‖2

−β + 〈ATΠf,Πf〉
)
.

Notice that κ does not depend on k > 0 (the parameter k appears in the assumptions

of Theorem 1). Expressing D[f ] in terms of 〈ATΠf,Πf〉 is standard, see for instance [4],

but using the weighted norm ‖(Id − Π)f‖−β is a new idea.

Proof. We have to prove that the three last terms in D[f ] are controlled by the first

two. The main difference with [10, 4] is the additional weight 〈v〉−β in the velocity

variable.

• Step 1: rewriting 〈ATΠf,Πf〉. Let u = uf be such that

uF = (Id + (TΠ)∗(TΠ))−1
Πf .

Then u solves (u− Θ ∆u)F = Πf , that is,

u− Θ ∆u = ρf (10)

where Θ :=
∫
Rd |v · e|2 F (v) dv for an arbitrary unit vector e. Since

ATΠf = (Id + (TΠ)∗(TΠ))−1 (TΠ)∗(TΠ) Πf

=
(
Id + (TΠ)∗(TΠ)

)−1(
Id + (TΠ)∗(TΠ) − Id

)
Πf

= Πf −
(
Id + (TΠ)∗(TΠ)

)−1
Πf = Πf − uF = (ρf − u)F ,
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then by using equation (10), we obtain

〈ATΠf,Πf〉 = 〈Πf − uF,Πf〉 = 〈−Θ ∆uF, (u− Θ ∆u)F 〉 ,
from which we deduce

〈ATΠf,Πf〉 = Θ ‖∇u‖2
L2( dx) + Θ2 ‖∆u‖2

L2( dx) . (11)

• Step 2: a bound on 〈AT(Id − Π)f,Πf〉. If u solves (10), we use the fact that

A∗Πf = TΠuF = TuF (12)

to compute

〈AT(Id − Π)f,Πf〉 = 〈(Id − Π)f,T∗A∗Πf〉 = 〈(Id − Π)f,T∗TuF 〉 .
Therefore, since T∗TuF = − v · ∇x (v · ∇xu)F , the Cauchy-Schwarz inequality yields

|〈AT(Id − Π)f,Πf〉| ≤ ‖(Id − Π)f‖−β

∥∥∥∥
√
F 〈v〉

β
2 v · ∇x (v · ∇xu)

√
F
∥∥∥∥

L2(dx dv)

≤ Θ4+β ‖(Id − Π)f‖−β ‖∆u‖L2(dx) ,

hence

|〈AT(Id − Π)f,Πf〉| ≤ C4 ‖(Id − Π)f‖−β 〈ATΠf,Πf〉
1
2 (13)

where we have used identity (11), C4 = Θ4+β/Θ and

Θk :=
∫

Rd
〈v〉k F (v) dv .

With this convention, notice that Θ2 = dΘ.

• Step 3: estimating 〈TA(Id − Π)f, (Id − Π)f〉. As noticed in [10, Lemma 1], the

equation g = Πg = Af is equivalent to
(
Id + (TΠ)∗(TΠ)

)
g = (TΠ)∗f

which, after multiplying by g and integrating, yields

‖g‖2 + ‖Tg‖2 = 〈g, g + (TΠ)∗(TΠ)g〉
= 〈g, (TΠ)∗f〉 = 〈TΠg, f〉 = 〈TAf, f〉 ≤ ‖(Id − Π)f‖−β ‖TAf‖β

by the Cauchy-Schwarz inequality. We know that (TΠ)∗ = − ΠT so that Af = g = wF

is determined by the equation

w − Θ ∆w = − ∇x ·
∫

Rd
v f dv .
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After multiplying by w and integrating in x, we obtain that

Θ
∫

Rd
|∇xw|2 dx ≤

∫

Rd
|w|2 dx+ Θ

∫

Rd
|∇xw|2 dx

≤
(∫

Rd
|∇xw|2 dx

) 1
2
(∫

Rd
|∫

Rd v f dv|2 dx
) 1

2

and notice that

∫

Rd
|∫

Rd v f dv|2 dx =
∫

Rd

∣∣∣∣∣

∫

Rd
〈v〉− β

2
(Id − Π)f√

F
· |v| 〈v〉

β
2

√
F dv

∣∣∣∣∣

2

dx

≤ Θβ+2 ‖(Id − Π)f‖2
−β

by the Cauchy-Schwarz inequality. Hence
∫

Rd
|∇xw|2 dx ≤ Θβ+2

Θ2
‖(Id − Π)f‖2

−β

and

‖TAf‖2
β =

∥∥∥∇xw · (v 〈v〉β/2 F )
∥∥∥

2
= Θβ+2

∫

Rd
|∇xw|2 dx ≤ C2

2 ‖(Id − Π)f‖2
−β

with C2 := Θβ+2/Θ. Since g = Af so that ‖Af‖2 + ‖TAf‖2 = ‖g‖2 + ‖Tg‖2, we obtain

that

〈TAf, f〉 = 〈TA(Id − Π)f, (Id − Π)f〉
≤ ‖(Id − Π)f‖−β ‖TAf‖β ≤ C2 ‖(Id − Π)f‖2

−β . (14)

We can also notice that

〈TAf, f〉 = 〈(v · ∇xw)F, f〉 =
∫

Rd
∇xw ·

(∫

Rd
v f dv

)
dx

=
∫

Rd
|w|2 dx+ Θ

∫

Rd
|∇xw|2 dx ≥ 0 .

• Step 4: bound for 〈AL(Id − Π)f,Πf〉. We use again identity (12) to compute

|〈AL(Id − Π)f,Πf〉| = |〈(Id − Π)f, L∗A∗Πf〉| = |〈(Id − Π)f, L∗TuF 〉|
≤ ‖(Id − Π)f‖−β ‖L∗TuF‖β .

In case L = L1 we remark that

‖L∗TuF‖2
β =

∫∫

Rd×Rd

∣∣∣∇v ·
(
F ∇v (v · ∇xu)

)∣∣∣
2 〈v〉β dx dµ

=
∫∫

Rd×Rd
|∇vF · ∇xu|2 〈v〉β dx dµ ≤ ‖∇vF‖2

L2(〈v〉βdµ) ‖∇xu‖2
L2( dx) .
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In case L = L2, notice first that

LTuF =
(∫

Rd
b(·, v′) (v′ − v)F ′ dv′

)
∇xuF ,

and thus, by the Cauchy-Schwarz inequality,

‖L∗TuF‖β ≤ B ‖∇xu‖L2( dx) , where B =

∥∥∥∥
∫

Rd
b(v, v′) (v′ − v)F ′ F dv′

∥∥∥∥
L2(〈v〉βdµ)

is bounded by assumption (H4). Combining these estimates with identity (11) we get

|〈AL(Id − Π)f,Πf〉| ≤ CF ‖(Id − Π)f‖−β 〈ATΠf,Πf〉
1
2 (15)

where CF = B/
√

Θ.

• Step 5: collecting all estimates. Altogether, combining (9) and (13)–(15), we

obtain

d

dt
H[f ] ≤ − C ‖(Id − Π)f‖2

−β − δ 〈ATΠf,Πf〉

+ δ (C4 + CF ) ‖(Id − Π)f‖−β 〈ATΠf,Πf〉
1
2 + δ C2 ‖(Id − Π)f‖2

−β

which by Young’s inequality yields the existence of κ > 0 such that

d

dt
H[f ] ≤ −κ

(
‖(Id − Π)f‖2

−β + 〈ATΠf,Πf〉
)

for some δ ∈ (0, 1). Indeed, with X := ‖(Id − Π)f‖−β and Y := 〈ATΠf,Πf〉
1
2 , it is

enough to check that the quadratic form

Q(X, Y ) := (C − δ C2)X2 − (C4 + CF )X Y + δ Y 2

is negative, i.e., Q(X, Y ) ≥ κ (X2 + Y 2) for some κ = κ(δ) and δ ∈ (0, 1). �

3. Weighted L2 estimates

In this section, we show the propagation of weighted norms with weights 〈v〉k of

arbitrary positive order k ∈ R
+.

Proposition 3. Let k > 0 and f be solution of (1) with f in ∈ L2(〈v〉k dx dµ). Then

there exists a constant Kk > 1 such that

∀ t ≥ 0 ‖f(t, ·, ·)‖L2(〈v〉k dx dµ) ≤ Kk

∥∥∥f in
∥∥∥

L2(〈v〉k dx dµ)
.

We shall state a technical lemma (Lemma 4 below) before proving a splitting result

in Lemma 5, from which the proof of Proposition 3 easily follows (see section 3.3).
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3.1. A technical lemma.

Lemma 4. If either L = L1 or L = L2, then

∀ t ≥ 0 ,
∥∥∥et(L−T)

∥∥∥
L2(dx dµ)→L2(dx dµ)

≤ 1 (16)

and there is some ℓ ∈ R for which, for any k ≥ 0, there exists (ak, bk, Rk) ∈ R × R
2
+

such that∫∫

Rd×Rd
f Lf 〈v〉k dx dµ ≤

∫∫

Rd×Rd

(
ak 1BRk

− bk 〈v〉−ℓ
)

|f |2 〈v〉k dx dµ (17)

for any f ∈ L2(〈v〉k dx dµ) ∩ L1(dx dv).

Proof. In the Fokker-Planck case L = L1, the function h := fF−1 solves

∂th+ v · ∇xh = F−1 ∇v ·
(
F ∇vh

)

so that
∫∫

Rd×Rd
f L1f 〈v〉k dx dµ =

d

dt

∫∫

Rd×Rd
|h(t, v)|2 〈v〉k F dx dv

= − 2
∫∫

Rd×Rd
|∇vh|2 〈v〉k F dx dv −

∫∫

Rd×Rd
∇v(h

2) ·
(
∇v 〈v〉k

)
F dx dv .

This proves (16) if k = 0. Otherwise, (17) follows with ℓ = 2 − α from

∇v log
(
F ∇v

(
〈v〉k

))
=

k

〈v〉4

(
d+ (k + d− 2) |v|2 − α 〈v〉α |v|2

)
.

In the case of the scattering operator L = L2, with h := f/F , we have

2
∫

Rd
f L2f 〈v〉k dµ = 2

∫∫

Rd×Rd
b(v, v′) (h′ − h)h 〈v〉k F F ′ dv dv′

=
∫∫

Rd×Rd
b(v, v′)

(
(h′ − h) h+ h′h

)
〈v〉k F F ′ dv dv′

−
∫∫

Rd×Rd
b(v, v′) |h|2 〈v〉k F F ′ dv dv′ ,

2
∫

Rd
f L2f 〈v〉k dµ =

∫∫

Rd×Rd
b(v, v′) ((h′ − h) h+ h′ (h− h′)) 〈v〉k F F ′ dv dv′

+
∫∫

Rd×Rd
b(v, v′)

(
|h′|2 − |h|2

)
〈v〉k F F ′ dv dv′

= −
∫∫

Rd×Rd
b(v, v′)|h′ − h|2 〈v〉k F F ′ dv dv′

+
∫∫

Rd×Rd
b(v, v′)

(
|h′|2 − |h|2

)
〈v〉k F F ′ dv dv′

≤
∫∫

Rd×Rd
b(v, v′)

(
|h′|2 − |h|2

)
〈v〉k F F ′ dv dv′ .
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However, using assumption (H1), one can rearrange the last integral
∫∫

Rd×Rd
b(v, v′)

(
|h′|2 − |h|2

)
〈v〉k F F ′ dv dv′

=
∫∫

Rd×Rd
b(v, v′) |h′|2 〈v〉k F F ′ dv dv′ −

∫∫

Rd×Rd
b(v′, v) |h|2 〈v〉k F F ′ dv dv′

=
∫∫

Rd×Rd
b(v, v′) |h′|2 〈v〉k F F ′ dv dv′ −

∫∫

Rd×Rd
b(v, v′) |h′|2 〈v′〉k F F ′ dv dv′

=
∫

Rd

[∫

Rd
b(v′, v)

(
〈v′〉k − 〈v〉k

)
F ′ dv′

]
|h|2 F dv

=
∫

Rd

[∫

Rd
b(v′, v)

(
〈v′〉k

〈v〉k − 1
)
F ′ dv′

]
|f |2 〈v〉k dµ .

This implies identity (16) by taking k = 0. To get inequality (17), we point out that

2
∫

Rd
f L2f 〈v〉k dµ =

∫

Rd
b(v′, v) 〈v′〉k

〈v〉k F
′ dv′ − ν(v)

≤ 〈v〉−k
√

Θ2k

∫
Rd b(v′, v)2 F ′ dv′ − ν(v) ≤

(
〈v〉−k

√
Cb Θ2k − 1

)
ν(v)

where we used assumption (H4). Finally, we conclude that inequality (17) holds for

any k > 0 with ℓ = β. �

3.2. A splitting result. As in [11, 13, 17], we write L − T as a dissipative part C

and a bounded part B such that L − T = B + C.

Lemma 5. With the notation of Lemma 4, let k1 > 0, k2 > k1+2 ℓ, a = max{ak1 , ak2},

R = max{Rk1 , Rk2}, C = a1BR
and B = L − T − C. For any t ∈ R+, we have:

(i) ‖C‖L2(dx dµ)→L2(〈v〉k2 dx dµ) ≤ a 〈R〉k2/2,

(ii) ‖etB‖L2(〈v〉k1 dx dµ)→L2(〈v〉k1 dx dµ) ≤ 1,

(iii) ‖etB‖L2(〈v〉k2 dx dµ)→L2(〈v〉k1 dx dµ) ≤ C (1 + t)−
k2−k1

2 ℓ for some C > 0.

Proof. Property (i) is a consequence of the definition of C. Property (ii) follows from

Lemma 4 according to
∫∫

Rd×Rd
f Bf 〈v〉k1 dx dµ ≤

∫∫

Rd×Rd

(
ak1 1BRk1

− a1BR
− bk1 〈v〉−ℓ

)
|f |2 〈v〉k1 dx dµ

≤ − bk1

∫∫

Rd×Rd
|f |2 〈v〉k1−ℓ dx dµ .

Similarly, we know that ‖etB‖L2(〈v〉k2 dx dµ)→L2(〈v〉k2 dxdµ) ≤ 1.

By combining Hölder’s inequality

‖f‖2
L2(〈v〉k1 dx dµ) ≤ ‖f‖

2 (k2−k1)
k2−k1+ℓ

L2(〈v〉k1−ℓ dx dµ)
‖f‖

2 ℓ
k2−k1+ℓ

L2(〈v〉k2 dx dµ)
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with Property (ii), we obtain

∫∫

Rd×Rd
f Bf 〈v〉k1 dx dµ ≤ − bk1 ‖f‖

2

(
1+ ℓ

k2−k1

)

L2(〈v〉k1 dx dµ)

∥∥∥f in
∥∥∥

− 2 ℓ
k2−k1

L2(〈v〉k2 dxdµ)
.

With f = etB f in, Property (iii) follows from Grönwall’s lemma according to

‖f‖2
L2(〈v〉k1 dxdµ) ≤

(∥∥∥f in
∥∥∥

− 2 ℓ
k2−k1

L2(〈v〉k1 dx dµ)
+

2 ℓ bk1 t

k2 − k1

∥∥∥f in
∥∥∥

− 2 ℓ
k2−k1

L2(〈v〉k2 dx dµ)

)−
k2−k1

ℓ

≤
(

k2 − k1

k2 − k1 + 2 ℓ bk1 t

) k2−k1
ℓ ∥∥∥f in

∥∥∥
2

L2(〈v〉k2 dx dµ)
.

�

3.3. Proof of Proposition 3. Using the convolution U ∗ V =
∫ t

0 U(t − s)V (s) ds,

Duhamel’s formula asserts that

et(L−T) = etB + etB ∗ C et(L−T) .

By Lemma 5 and (16) with k = k1, ℓ as in Lemma 4 and k2 > k + 2 ℓ, we get that
∥∥∥et(L−T)

∥∥∥
L2(〈v〉k1 dxdµ)→L2(〈v〉k1 dx dµ)

≤ 1 + a 〈R〉
k2
2

∫ t

0

C ds

(1 + s)
k2−k1

2 ℓ

is bounded uniformly in time. �

4. Proof of Theorem 1

The control of the macroscopic part Πf by 〈ATΠf,Πf〉 is achieved exactly as in [4].

We sketch a proof for the sake of completeness.

Lemma 6. Under the assumptions of Theorem 1, for any f ∈ L1(dx dµ) ∩ L2(dx dv),

〈ATΠf,Πf〉 ≥ Φ
(
‖Πf‖2

)

with

Φ−1(y) := 2 y +
(
y

c

) d
d+2

, c = Θ C− d+2
d

Nash ‖f‖− 4
d

L1(dx dv) .

Proof. With u defined by (10), we control ‖Πf‖2 = ‖ρf‖2
L2(dx) by 〈ATΠf,Πf〉 accord-

ing to

‖Πf‖2 = ‖u‖2
L2( dx) + 2 Θ ‖∇u‖2

L2( dx) + Θ2 ‖∆u‖2
L2( dx) ≤ ‖u‖2

L2( dx) + 2 〈ATΠf, f〉 .
using (11). Then we observe that, for any t ≥ 0,

‖u(t, ·)‖L1 = ‖ρf(t, ·)‖L1 = ‖f‖L1(dx dv) , ‖∇u(t, ·)‖2
L2(dx) ≤ 1

Θ
〈ATΠf(t, ·, ·), f(t, ·, ·)〉
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and use Nash’s inequality

‖u‖2
L2( dx) ≤ CNash ‖u‖

4
d+2

L1( dx) ‖∇u‖
2 d

d+2

L2( dx)

to conclude the proof. �

The control of (Id − Π)f by the entropy production term relies on a new estimate.

Lemma 7. Under the assumptions of Theorem 1, for any f ∈ L2(〈v〉k dx dµ) ∩
L1(dx dv),

‖(Id − Π)f‖2
−β ≥ Ψ

(
‖(Id − Π)f‖2

)

where Kk is as in Proposition 3 and

Ψ(y) := C0 y
1+β/k , C0 :=

(
Kk

(
1 + Θk

)
‖f in‖k

)− 2 β
k

.

Proof. Hölder’s inequality

‖(Id − Π)f‖ ≤ ‖(Id − Π)f‖
k

k+β

−β ‖(Id − Π)f‖
β

k+β

k

and

‖(Id − Π)f‖L2(〈v〉k dxdµ) ≤ ‖f‖k + Θk ‖ρ‖L2( dx)

≤ (1 + Θk) ‖f‖k ≤ Kk (1 + Θk)
∥∥∥f in

∥∥∥
k
,

where the last inequality holds by Proposition 3, provide us with the estimate. �

Proof of Theorem 1. Using the estimates of Lemma 6 and Lemma 7, we obtain that

‖(Id − Π)f‖2
−β + 〈ATΠf,Πf〉 ≥ Ψ

(
‖(Id − Π)f‖2

)
+ Φ

(
‖Πf‖2

)
.

Using (7), (8) and the fact that D[f ] ≥ 0 by Proposition 2, we know that

‖(Id − Π)f‖2 ≤ z0 and ‖Πf‖2 ≤ z0 where z0 :=
1 + δ

1 − δ
‖f in‖2 .

Thus, from

Φ−1(y) = y +
(
y

c

) d
d+2 ≤

(
C−1

1 y
) d

d+2 with C1 :=
(
Φ(z0)

2
d+2 + c− d

d+2

)− d+2
d
,

as long as y ≤ Φ(z0), we obtain

Φ
(
‖Πf‖2

)
≥ C1 ‖Πf‖ 2 d+2

d ,

since ‖Πf‖2 ≤ z0. As a consequence,

‖(Id − Π)f‖2
−β + 〈ATΠf,Πf〉 ≥ C0 ‖(Id − Π)f‖ 2 k+β

k + C1 ‖Πf‖ 2 d+2
d

≥ 2
1
ζ min

{
C0 z

β
k

− 1
ζ

0 , C1 z
2
d

− 1
ζ

0

}
‖f‖ 2+ 2

ζ
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where 1/ζ = max {2/d, β/k}, i.e., ζ = min {d/2, k/β}. Collecting terms, we have

d

dt
H[f ] ≤ −C ζ H[f ]1+ 1

ζ

using (7), (8) and Proposition 2, and

C :=
κ

ζ
2

1
ζ min

{
C0 z

β
k

− 1
ζ

0 , C1 z
2
d

− 1
ζ

0

} (
2

1+δ

)1+ 1
ζ .

Then the result of Theorem 1 follows from a Grönwall estimate.

H[f(t, ·, ·)] ≤ H[f in]
(
1 + C H[f in]

1
ζ t
)− 1

ζ

The expression of κ can be explicitly computed in terms of C0 z
β
k

− 1
ζ

0 H[f in]
1
ζ , which is

proportional to (‖f in‖ / ‖f in‖k)
2 β
k , and in terms of C1 z

2
d

− 1
ζ

0 H[f in]
1
ζ which is a function

of (‖f in‖L1(dx dv) / ‖f in‖)4/(d+2), but it is of no practical interest. To see this, one has to

take into account the expressions of C0, C1 and c in terms of the initial datum f in. �

As a concluding remark, we emphasize that a control of the solution in the space

L2(〈v〉k dx dµ), based on Proposition 3, is enough to prove Theorem 1. In particular,

there is no need of a uniform bound on f . This observation is new in L2 hypocoercive

methods, and consistent with the homogeneous case (see Appendix B).

Appendix A. Weighted Poincaré inequalities

This appendix is devoted to a proof of (6) and considerations on related Poincaré

inequalities. Inequality (6) is not a standard weighted Poincaré inequality because the

average in the right-hand side of the inequality involves the measure of the left-hand

side so that the right-hand side cannot be interpreted as a variance. Here we prove a

generalization of (6) which relies on a purely spectral approach.

A.1. Continuous spectrum and weighted Poincaré inequalities. Let us con-

sider two probability measures on R
d

dξ = e−φ dv and dν = ψ dξ ,

where φ and ψ ≥ 0 are two measurable functions, and the weighted Poincaré inequality

∀h ∈ D(Rd) ,
∫

Rd
|∇h|2 dξ ≥ C⋆

∫

Rd

∣∣∣h− ĥ
∣∣∣
2

dν (18)

where ĥ =
∫
Rd h dν. The question we address here is: on which conditions on φ and ψ

do we know that (18) holds for some constant C⋆ > 0 ? Our key example is

φ(v) = 〈v〉α + logZα and ψ(v) = c−1
α,β 〈v〉−β (19)

with α > 0, β > 0, Zα =
∫
Rd e−φ dv and cα,β =

∫
Rd 〈v〉−β dξ.
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Let us consider a potential Φ on R
d and assume that it is a measurable function

with

σ = lim
r→+∞

inf
w∈D(Bc

r)\{0}

∫
Rd (|∇w|2 + Φ |w|2) dv

∫
Rd |w|2 dv

> 0 ,

where Bc
r :=

{
v ∈ R

d : |v| > r
}

and D(Bc
r) denotes the space of smooth functions

on R
d with compact support in Bc

r. According to Persson’s result [19, Theorem 2.1],

the lower end σ of the continuous spectrum of the Schrödinger operator − ∆ + Φ is

such that

σ ≥ lim
r→+∞

infess
v∈Bc

r

Φ(v) =: σ0 .

If we replace
∫
Rd |w|2 dv by the weighted integral

∫
Rd |w|2 ψ dv for some measurable

function ψ, we have the modified result that the operator L = ψ−1 (− ∆ + Φ) on

L2(Rd, ψ dv), associated with the quadratic form

w 7→
∫

Rd

(
|∇w|2 + Φ |w|2

)
dv

has only discrete eigenvalues in the interval (−∞, σ) where

σ = lim
r→+∞

inf
w∈D(Bc

r)\{0}

∫
Rd (|∇w|2 + Φ |w|2) dv

∫
Rd |w|2ψ dv

> 0 .

To prove it, it is enough to observe that 0 is the lower end of the continuous spectrum

of L − σ by applying again [19, Theorem 2.1]. It is also straightforward to check that

the lower end of the continuous spectrum of L is such that

σ ≥ lim
r→+∞

q(r) =: σ0 where q(r) := infess
Bc

r

Φ

ψ
.

Notice that σ0 is either finite or infinite. In the case of (19), we get that σ0 ∈ (0,+∞]

if and only if β ≥ 2 (1 − α). Relating the weighted Poincaré inequality (18) with the

spectrum of L is then classical. Let

h = w eφ/2 , Φ = 1
4

|∇φ|2 − 1
2

∆φ (20)

and observe that ∫

Rd
|∇h|2 dξ = Z−1

α

∫

Rd

(
|∇w|2 + Φ |w|2

)
dv ,

∫

Rd

∣∣∣h− ĥ
∣∣∣
2

dξ = Z−1
α

∫

Rd
|w − w̃|2 ψ dv ,

where w̃ =

∫
Rd wψ e

−φ/2 dv∫
Rd ψ e

−φ dv
e−φ/2.

Proposition 8. With the above notations, let Φ and ψ be two measurable func-

tions such that σ0 > 0. Then inequality (18) holds for some positive, finite, op-

timal constant C⋆ > 0, which is at least equal to σ. Otherwise, if we have that

limr→+∞ supessv∈Bc
r

Φ(v)
ψ(v)

= 0, then inequality (18) does not hold.
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Proof. By construction, σ is nonnegative and the infimum of the Rayleigh quotient

w 7→
∫
Rd (|∇w|2 + Φ |w|2) dv

∫
Rd |w|2 ψ dv

is achieved by h ≡ ĥ = 1, that is, by w = w̃ = e−φ/2, which moreover generates the

kernel of L. Hence we can interpret C⋆ as the first positive eigenvalue, if there is any

in the interval (0, σ), or C⋆ = σ if there is none. �

In the case of (19), the condition β ≥ 2 (1−α) is a necessary and sufficient condition

for the inequality (18) to hold. The threshold case β = 2 (1 − α) is remarkable:

inequality (18) can be rewritten for any α ∈ (0, 1) as

∀h ∈ D(Rd) ,
∫

Rd
|∇h|2 e−〈v〉α

dv ≥ C⋆
∫

Rd

∣∣∣h− ĥ
∣∣∣
2
e−〈v〉α

(1 + |v|2)1−α dv

for some constant C⋆ ∈
(
0, α2/4

]
and

ĥ :=
1

zα

∫

Rd

h e−〈v〉α

(1 + |v|2)1−α dv , zα =
∫

Rd

e−〈v〉α

(1 + |v|2)1−α dv .

A.2. A weighted Poincaré inequality with a non-classical average.

Corollary 9. Let Φ and ψ be respectively a measurable function and a bounded positive

function such that, with the notations of section A.1, σ0 > 0 and ψ−1 ∈ L1(Rd, dξ).

Then the inequality

∀h ∈ D(Rd) ,
∫

Rd
|∇h|2 dξ ≥ C

∫

Rd

∣∣∣h− h̃
∣∣∣
2

dν (21)

holds for some optimal constant C ∈ (0, C⋆], where h̃ :=
∫
Rd h dξ. Here C⋆ denotes the

optimal constant in (18).

As we shall see in the proof, our method provides us with an explicit lower bound C
in terms of C⋆. We emphasize that in (21), the right-hand side is not the variance of h

with respect of the measure dν because we subtract the average with respect to the

measure dξ which appears in the left-hand side. In case φ(v) = 〈v〉α, inequality (21) is

equivalent to [13, inequality (1.12)], which can be deduced using the strategy of [1, 2].

Also see Appendix B.1 for further details.

Proof. Let us consider a function h. With no loss of generality, we can assume that

h̃ =
∫
Rd h dξ = 0 up to the replacement of h by h− h̃. We use the IMS decomposition

method (see [18, 21]), which goes as follows. Let χ be a truncation function on R+

with the following properties: 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], χ ≡ 0 on [2,+∞) and

χ′2/ (1 − χ2) ≤ κ for some κ > 0. Next, we define χR(v) = χ
(
|v|/R

)
, h1,R = hχR
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and h2,R = h
√

1 − χ2
R, so that h1,R is supported in the ball B2R of radius 2R centered

at v = 0 and h2,R is supported in Bc
R = R

d \ BR. Elementary computations show

that h2 = h2
1,R + h2

2,R and |∇h|2 = |∇h1,R|2 + |∇h2,R|2 − h2 |∇χ|2/ (1 − χ2), so that∣∣∣|∇h|2 − |∇h1,R|2 − |∇h2,R|2
∣∣∣ ≤ κh2/R2.

Since h2,R is supported in Bc
R, we know that

∫

Rd
|∇h2,R|2 dξ ≥ q(R)

∫

Rd
|h2,R|2 dν

for any R > 0, where q is the quotient involved in the definition of σ0. We recall

that limr→+∞ q(r) = σ0 > 0. Using the method of the Holley-Stroock lemma (see [12]

and [8] for a recent presentation), we deduce from inequality (18) that
∫

Rd
|∇h1,R|2 dξ ≥ C⋆

∫

Rd

∣∣∣h1,R − ĥ1,R

∣∣∣
2

dν

≥ C⋆
∫

B2R

∣∣∣h1,R − ĥ1,R

∣∣∣
2
ψ dξ

≥ C⋆ inf
B2R

ψ min
c∈R

∫

B2R

|h1,R − c|2 dξ

≥ Q(R)
∫

Rd
|h1,R|2 dν − C⋆

infB2R
ψ

ξ(B2R)

(∫

Rd
h1,R dξ

)2

where Q(R) := C⋆ infB2R
ψ/ supB2R

ψ. By the assumption h̃ = 0, we know that
∫

BR

h dξ = −
∫

Bc
R

h dξ ,

from which we deduce that
(∫

Rd
h1,R dξ

)2

=

(∫

BR

h dξ +
∫

Bc
R

χh dξ

)2

≤
(∫

Bc
R

|h| dξ

)2

≤
∫

Rd
h2 dν

∫

Bc
R

ψ−1 dξ

where the last inequality is simply a Cauchy-Schwarz inequality. Let

ε(R) := C⋆
infB2R

ψ

ξ(B2R)

∫

Bc
R

ψ−1 dξ .

By the assumption that ψ−1 ∈ L1(Rd, dξ), we know that

lim
R→+∞

ε(R) = 0 and lim
R→+∞

ε(R)

Q(R)
= 0 .

Collecting all our assumptions, we have
∫

Rd
|∇h|2 dξ ≥

∫

Rd

(
|∇h1,R|2 + |∇h2,R|2 − κ

R2
h2
)

dξ

≥
(

min
{
Q(R), q(R)

}
− ε(R) − κ

R2

) ∫

Rd
|h|2 dν

where min
{
Q(R), q(R)

}
− ε(R) − κ/R2 is positive for R > 0, large enough.
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Finally, let us notice that for any c ∈ R we have
∫

Rd
|h− c |2 dν =

∫

Rd
h2 dν − 2 c

∫

Rd
h dν + c2 ≥

∫

Rd

∣∣∣h− ĥ
∣∣∣
2

dν

with equality if and only if c = ĥ =
∫
Rd h dν. As a special case corresponding to

c = h̃ =
∫
Rd h dξ, we have

∫

Rd

∣∣∣h− h̃
∣∣∣
2

dν ≥
∫

Rd

∣∣∣h− ĥ
∣∣∣
2

dν.

This proves that C⋆ ≥ C. �

In the special case of (19), it is possible to give a slightly shorter proof using the

Poincaré inequality on BR, for the measure dξ: see [16, Chapter 6]. An independent

proof of such an inequality is then needed for a general φ. The proof of Corollary 9 is

more general and reduces everything to a comparison of the asymptotic behavior of φ

and ψ. If these functions are given by (19), inequality (21) can be rewritten in the

form of (6), we have an estimate of C and we can characterize C⋆ as follows.

Proposition 10. The optimal constant C⋆ is the ground state energy of the operator

L = ψ−1 (− ∆ + Φ) on L2(Rd, ψ dv).

The proof relies on (20). Details are left to the reader.

Appendix B. Algebraic decay rates for the Fokker-Planck equation

Here we consider simple estimates of the decay rates in the homogenous case given

by f(t, x, v) = g(t, v) of equation (1), that is, the Fokker-Planck equation

∂tg = L1g . (22)

After summarizing the standard approach based on the weak Poincaré inequality (see

for instance [13]) in Section B.1, we introduce a new method which relies on weighted

L2 estimates. As already mentioned, the advantage of weighted Poincaré inequalities

is that the description of the convergence rates to the local equilibrium does not

require extra regularity assumptions to cover the transition from super-exponential

(α > 1) and exponential (α = 1) local equilibria to sub-exponential local equilibria,

with α ∈ (0, 1).

B.1. Weak Poincaré inequality. We assume that α satisfies (5) and η ∈
(
0, β

)

with β = 2 (1 − α). By a simple Hölder inequality, with (τ + 1)/τ = β/η, we obtain
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that
∫

Rd

∣∣∣h− h̃
∣∣∣
2

dξ =
∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉−η 〈v〉η dξ

≤
(∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉−β dξ

) τ
τ+1

(∫

Rd

∥∥∥h− h̃
∥∥∥

2

L∞(Rd)
〈v〉β τ dξ

) 1
1+τ

.

Here we choose h̃ :=
∫
Rd h dξ. Using (6), we end up with

∀h ∈ D(Rd),
∫

Rd

∣∣∣h− h̃
∣∣∣
2

dξ ≤ Cα,τ
(∫

Rd
|∇h|2 dξ

) τ
1+τ

∥∥∥h− h̃
∥∥∥

2
1+τ

L∞(Rd)
, (23)

for some explicit positive constant Cα,τ . We learn from (3) that

d

dt

∫

Rd

∣∣∣h(t, ·) − h̃
∣∣∣
2

dξ = − 2
∫

Rd
|∇vh|2 dξ

if g = hF is solves (22), and we also know that h̃ does not depend on t. By a strategy

that goes back at least to [14, Theorem 2.2] and is due, according to the author, to

D. Stroock, we obtain that

∫

Rd

∣∣∣h(t, ·) − h̃
∣∣∣
2

dξ ≤
((∫

Rd

∣∣∣h(0, ·) − h̃
∣∣∣
2

dξ
)− 1

τ

+
2 τ−1

C1+1/τ
α,τ M

t

)−τ

with M = sups∈(0,t)

∥∥∥h(s, ·) − h̃
∥∥∥

2/τ

L∞(Rd)
. The limitation is of course that we need to

restrict the initial conditions in order to have M uniformly bounded with respect to t.

Since η can be chosen arbitrarily close to β, the exponent τ can be taken arbitrarily

large but to the price of a constant Cα,τ which explodes as η → β−.

Notice that (23) is equivalent to the weak Poincaré inequality

∀h ∈ D(Rd) , C−1
α,τ

∫

Rd

∣∣∣h− h̃
∣∣∣
2

dξ ≤ τ

(1+τ)1+ 1
τ
r− τ

1+τ

∫

Rd
|∇h|2 dξ + r

∥∥∥h− h̃
∥∥∥

2

L∞(Rd)
,

for all r > 0, as stated in [20, (1.6) and example 1.4 (c)]. The equivalence of this

inequality and (23) is easily recovered by optimizing on r > 0. It is worth to remark

that here we consider
∥∥∥h− h̃

∥∥∥
L∞(Rd)

while various other quantities like, e.g., the median

can be used in weak Poincaré inequalities.

B.2. Weighted L2 estimates. As an alternative approach to the weak Poincaré in-

equality method of Appendix B.1, we can consider for some arbitrary k > 0 the

evolution according to equation (22) of
∫
Rd |h(t, v)|2 〈v〉k dξ =

∫
Rd |h(t, v)|2 〈v〉k F dv

where h := g/F solves

∂th = F−1 ∇v ·
(
F ∇vh

)
.

Let us compute

d

dt

∫

Rd
|h(t, v)|2 〈v〉k F dv + 2

∫

Rd
|∇vh|2 〈v〉k F dv = −

∫

Rd
∇v(h

2) ·
(
∇v 〈v〉k

)
F dv
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and observe with ℓ = 2 − α that

∇v ·
(
F ∇v 〈v〉k

)
=

k

〈v〉4

(
d+ (k + d− 2) |v|2 − α 〈v〉α |v|2

)
≤ a− b 〈v〉−ℓ

for some a ∈ R, b ∈ (0,+∞). The same proof as in Proposition 3 shows that there

exists a constant Kk > 0 such that

∀ t ≥ 0 ‖h(t, ·)‖L2(〈v〉k dξ) ≤ Kk

∥∥∥hin
∥∥∥

L2(〈v〉k dξ)
.

Hence, if h solves (22) with initial value hin, we can use (6) to write

d

dt

∫

Rd

∣∣∣h(t, ·) − h̃
∣∣∣
2

dξ = − 2
∫

Rd
|∇vh|2 dξ ≤ − 2 C

∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉−β dξ

with β = 2 (1 − α) and h̃ =
∫
Rd h dξ. With θ = k/

(
k + β

)
, Hölder’s inequality

∫

Rd

∣∣∣h− h̃
∣∣∣
2

dξ ≤
(∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉−β dξ

)θ (∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉k dξ

)1−θ

allows us to estimate the right hand side and obtain the following result.

Proposition 11. Assume that α satisfies (5). Let gin ∈ L1
+(dµ)∩L2(〈v〉k dµ) for some

k > 0 and consider the solution g to (22) with initial datum gin. With C as in (6), if

g = (
∫
Rd g dv)F where F is given by (4), then

∫

Rd
|g(t, ·) − g|2 dµ ≤

((∫

Rd

∣∣∣gin − g
∣∣∣
2

dµ
)−β/k

+
2 β C
kKβ/k

t

)−k/β

with β = 2 (1 − α) and K := K2
k ‖gin‖2

L2(〈v〉k dµ) + Θk (
∫
Rd gin dv)

2
.

We recall that g = hF , g = h̃ F and F dµ = dv = F−1 dξ. We notice that

arbitrarily large decay rates can be obtained under the condition that k > 0 is large

enough. We recover that when k < d β/2, the rate of relaxation to the equilibrium is

slower than (1 + t)−d/2 and responsible for the limitation that appears in Theorem 1.

However, the rate of the heat flow is recovered in Theorem 1 for a weight of order k

with an arbitrarily small k > 0 if α is taken close enough to 1.

Proof. Using

1

2

∫

Rd

∣∣∣h− h̃
∣∣∣
2 〈v〉k dξ ≤

∫

Rd
|h|2 〈v〉k dξ + Θk h̃

2 = K ,

we obtain that y(t) :=
∫
Rd |g(t, ·) − g|2 dµ obeys to y′ ≤ − 2 C K1−1/θ y1/θ and conclude

by a Grönwall estimate. �
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