A Fully Stochastic Primal-Dual Algorithm - Archive ouverte HAL
Article Dans Une Revue Optimization Letters Année : 2020

A Fully Stochastic Primal-Dual Algorithm

Résumé

A new stochastic primal-dual algorithm for solving a composite optimization problem is proposed. It is assumed that all the functions / operators that enter the optimization problem are given as statistical expectations. These expectations are unknown but revealed across time through i.i.d realizations. The proposed algorithm is proven to converge to a saddle point of the Lagrangian function. In the framework of the monotone operator theory, the convergence proof relies on recent results on the stochastic Forward Backward algorithm involving random monotone operators. An example of convex optimization under stochastic linear constraints is considered.
Fichier principal
Vignette du fichier
19fully.pdf (348.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02369882 , version 1 (19-11-2019)
hal-02369882 , version 2 (18-12-2020)

Identifiants

Citer

Pascal Bianchi, Walid Hachem, Adil Salim. A Fully Stochastic Primal-Dual Algorithm. Optimization Letters, 2020, ⟨10.1007/s11590-020-01614-y⟩. ⟨hal-02369882v2⟩
150 Consultations
195 Téléchargements

Altmetric

Partager

More