A Fully Stochastic Primal-Dual Algorithm - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

A Fully Stochastic Primal-Dual Algorithm

Pascal Bianchi
  • Fonction : Auteur
  • PersonId : 846458
Walid Hachem

Résumé

A new stochastic primal-dual algorithm for solving a composite optimization problem is proposed. It is assumed that all the functions / operators that enter the optimization problem are given as statistical expectations. These expectations are unknown but revealed across time through i.i.d realizations. The proposed algorithm is proven to converge to a saddle point of the Lagrangian function. In the framework of the monotone operator theory, the convergence proof relies on recent results on the stochastic Forward Backward algorithm involving random monotone operators. An example of convex optimization under stochastic linear constraints is considered.
Fichier principal
Vignette du fichier
HAL_version.pdf (350.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02369882 , version 1 (19-11-2019)
hal-02369882 , version 2 (18-12-2020)

Identifiants

Citer

Pascal Bianchi, Walid Hachem, Adil Salim. A Fully Stochastic Primal-Dual Algorithm. 2019. ⟨hal-02369882v1⟩

Collections

COMELEC COMNUM
138 Consultations
188 Téléchargements

Altmetric

Partager

More