Graph estimation for Gaussian data zero-inflated by double truncation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Graph estimation for Gaussian data zero-inflated by double truncation

Résumé

We consider the problem of graph estimation in a zero-inflated Gaussian model. In this model, zero-inflation is obtained by double truncation (right and left) of a Gaussian vector. The goal is to recover the latent graph structure of the Gaussian vector with observations of the zero-inflated truncated vector. We propose a two step estimation procedure. The first step consists in estimating each term of the covariance matrix by maximising the corresponding bivariate marginal log-likelihood of the truncated vector. The second one uses the graphical lasso procedure to estimate the precision matrix sparsity, which encodes the graph structure. We then state some theoretical convergence results about the convergence rate of the covariance matrix and precision matrix esti-mators. These results allow us to establish consistency of our procedure with respect to graph structure recovery. We also present some simulation studies to corroborate the efficiency of our procedure.
Fichier principal
Vignette du fichier
TruncGaus - arXiv.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02367344 , version 1 (18-11-2019)

Identifiants

Citer

Anne Gégout-Petit, Aurélie Muller-Gueudin, Clémence Karmann. Graph estimation for Gaussian data zero-inflated by double truncation. 2019. ⟨hal-02367344⟩
101 Consultations
62 Téléchargements

Altmetric

Partager

More