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Abstract. We consider the problem of graph estimation in a zero-inflated Gaussian
model. In this model, zero-inflation is obtained by double truncation (right and left) of a
Gaussian vector. The goal is to recover the latent graph structure of the Gaussian vector
with observations of the zero-inflated truncated vector. We propose a two step estima-
tion procedure. The first step consists in estimating each term of the covariance matrix
by maximising the corresponding bivariate marginal log-likelihood of the truncated vec-
tor. The second one uses the graphical lasso procedure to estimate the precision matrix
sparsity, which encodes the graph structure. We then state some theoretical convergence
results about the convergence rate of the covariance matrix and precision matrix esti-
mators. These results allow us to establish consistency of our procedure with respect
to graph structure recovery. We also present some simulation studies to corroborate the
efficiency of our procedure.

Keywords. doubly truncated Gaussian; zero-inflation; graph estimation; precision
matrix; Gaussian graphical model; graphical lasso; sparsity.

1. Introduction

Multivariate data analysis often involves describing and explaining the relationships
among a set of variables. Undirected graphical models offer a way to address this de-
mand by using a graph to represent a model. A graph is a set of nodes and edges which
can be represented as a graphic in order to make it easier to study, visually or com-
putationally. Undirected graphical models are based on the conditional independence:
a relation between two variables, represented by an edge in the graph, means that the
corresponding variables are conditionally dependent given all the remaining variables.
Among undirected graphical models, Gaussian graphical model provides a particularly
convenient framework. This model assumes that the observations have a multivariate
Gaussian distribution with mean µ and covariance matrix Σ. In this Gaussian setting,
a direct relation between two variables corresponds to a non-zero entry in the precision
matrix Σ−1. In other words, if Σ−1

ij is zero, then variables i and j are conditionally in-
dependent given the other variables. Thus, graph estimation involves finding the zero
pattern in the inverse covariance matrix. The theoretical approaches developed solve a
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maximum likelihood problem with an added L1 penalty on the precision matrix to in-
crease sparsity of the resulting graph. Many authors like Yuan, M. and Lin, Y. (2007),
Dahl, J. and Vandenberghe, L. and Roychowdhury, V. (2008) or Banerjee, O., El Ghaoui,
L. and d’Aspremont, A. (2008) used interior point methods to solve the exact maximisa-
tion of the L1 penalised log-likelihood. One of the most powerful approach is the graphical
lasso of Friedman, J., Hastie, T. and Tibshirani, R. (2008), who used a blockwise coor-
dinate descent approach.

Furthermore, truncated Gaussian distributions received much attention in the second
half of the last century. Cohen (Cohen, Jr., A. C. (1949), Cohen, Jr., A. C. (1950), Cohen,
Jr., A. C. (1957)) studied extensively mean and standard deviation estimation with like-
lihood maximisation for univariate doubly truncated Gaussian. These data correspond
to Gaussian distributions which fall between two points of truncation a and b, a < b. He
distinguished cases when the number of “unmeasured” observations, that is observations
which fall into the tail(s), is known or not and whether we know the number in each tail.
Shah, S. M. and Jaiswal, M. C. (1966) also studied this case by estimating parameters
from first four sample moments.
Bivariate case was then naturally studied. Raj D. (1953) and Cohen, Jr., A. C. (1955)
studied mean, variance and covariance estimation when only one of the variables is trun-
cated whereas Nath, G. B. (1966), Dyer, D. D. (1973) then Muthén, B. (1990) analysed
it when both variables are truncated. In all these papers, as soon as one of the variables
falls outside its points of truncation, none of the variables of the bivector is observed. In
others words, data samples are only constituted of the Gaussian data for which the two
variables are observed.
About multivariate case, Cohen, Jr., A. C. (1957) estimate model parameters where only
one variable is truncated by likelihood maximisation. Singh, N. (1960) considers means
and variances estimation in the case where only some variables are truncated. Later,
Gupta, A. K. and Tracy, D. S. (1976), Lee, L. (1983) and Manjunath, BG and Wilhelm,
S. (2009) studied moments when all the variables of the Gaussian vector are doubly
truncated, that is, when all the variables of the Gaussian vector fall inside their points
of truncation. Graph estimation and matrix covariance estimation do not seem to have
yet been discussed in the literature.

In this paper, we address the problem of graph estimation in a zero-inflated Gaussian
model. In this model, zero-inflation is obtained by double truncation (right and left) of a
Gaussian vector. This means that each of the Gaussian variables are normally observed
inside its points of truncation, but is null otherwise. If a variable is truncated, we then
observe a zero instead of its value, but we still observe the other variables of the vec-
tor, contrary to the literature. Our goal is to recover the latent graph structure of the
Gaussian vector, encoded in the precision matrix, with observations of the zero-inflated
truncated vector. To retrieve this theoretical graph structure, we use the graphical lasso
procedure which involves the empirical covariance matrix. Unlike the classic Gaussian
setting, the Gaussian vector is not directly observed in our setting and its empirical
covariance matrix is therefore inaccessible. We then propose another estimator for the
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covariance matrix whose theoretical guarantees, including the control of the convergence
rate in infinite norm, required for the graphical lasso procedure, are studied.

The rest of the paper is organized as follows. In Section 2, we explicit the model
and present the two step estimation procedure. The first step consists in estimating the
covariance matrix, by estimating each term by maximising the corresponding bivariate
marginal log-likelihood of the truncated vector, which is a non-convex optimisation prob-
lem. The second one relies on the graphical lasso to estimate the precision matrix. Section
3 contains two theoretical results about the convergence rate of the covariance and the
precision matrix estimators. We first use recent results of Mei, S., Bai, Y. and Montanari,
A. (2017) to set out that our covariance matrix estimator concentrates well in infinite
norm around the theoretical covariance matrix. These results concern properties of the
stationary points of non-convex empirical risk minimisation problems. Next, we use this
first result and the consistency properties of graphical lasso, studied by Ravikumar, P.,
Wainwright, M. J., Raskutti, G. and Yu, B. (2011) in a more general framework, to show
consistency and sparsistency of our final estimator of the precision matrix. In Section 3,
we also state the resulting theorem which establishes consistency of our procedure with
respect to graph structure recovery. In Section 4, we present some simulations studies to
corroborate its theoretical efficiency.

2. Model and estimation procedure

2.1. Model

Let X be a Gaussian p-vector X ∼ Np(µ,Σ∗) where µ = (µj)j=1,...,p ∈ Rp is the mean
vector and Σ∗ = (Σ∗jk)1≤j,k≤p ∈ Mp(R) the covariance matrix. Let us consider the
p-vector Y defined as:

Yj = 1aj≤Xj≤bjXj for all j ∈ {1, . . . , p},

where the points of truncation aj , bj ∈ R, aj < bj are known and depend on j. The
Gaussian vector X is not directly observed, but it is observed through the zero-inflated
truncated vector Y . Unlike what exists in the (multivariate) truncated Gaussian litera-
ture (for example, in Gupta, A. K. and Tracy, D. S. (1976), Lee, L. (1983) and Manjunath,
BG and Wilhelm, S. (2009)), when one of the initial Gaussian variables falls outside its
points of truncation, we observe a zero instead and we observe the rest of the vector
according the same rule. In other words, our truncation does not consist in restricting to
the observations of X which falls into [a1, b1]× · · · × [ap, bp] ⊂ Rp.

Assume that µj = 0 and Σ∗jj = 1 for all j ∈ {1, . . . , p}. In practice, we can esti-
mate them with existing techniques for doubly truncated univariate Gaussian vector (for
example, (Cohen, Jr., A. C., 1957)) if variables are not centered and scaled.

Gaussian graphical model is particularly appropriate for conditional dependency graph
inference. Indeed, the precision matrix Θ∗ := (Σ∗)−1 specifies the conditional dependency
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structure (see Hastie T., Tibshirani R., and Friedman J. (2001)). More precisely, the
graph contains an edge between the variables Xj and Xk iff:

Xj ←→ Xk ⇐⇒ Xj 6 |= Xk | (Xl)l 6=j,k

⇐⇒ cor(Xj , Xk | (Xl)l 6=j,k) 6= 0

⇐⇒ Θ∗jk 6= 0.

 (2.1)

Given a symmetric positive definite matrix M , let us denote:

E(M) = {(j, k) ∈ {1, . . . , p}2, j 6= k, Mjk 6= 0}. (2.2)

In particular, E(Θ∗) denotes the set of the edges of the theoretical graph.

The goal of this paper is to recover the latent graph structure of the variables of the
Gaussian vector X from observations of the zero-inflated truncated vector Y .

2.2. Some theoretical tools

To explicit the model and exhibit some complexities, we give some theoretical tools and
will focus here on bivariate marginal likelihood from the truncated vector Y .

Let (j, k) ∈ {1, . . . , p}2, j < k and let fjk(x, y) = f(x, y,Σ∗jk) denotes the bivariate

marginal log-likelihood function of the Gaussian couple (Xj , Xk) ∼ N2

((
0
0

)
,

(
1 Σ∗jk

Σ∗jk 1

))
.

With these notations, the likelihood of (Yj , Yk) is then Ljk(Σ∗jk, y) where y is an
observation of the vector Y and:

Ljk(σ, y) =

1∑
a,b=0

φab,jk(σ, yj , yk)nab(yj , yk), (2.3)

with :

• nab(yj , yk) = 1ζj=a,ζk=b where ζl =

{
1 if yl ∈ [al, bl] \ {0},
0 if yl = 0.

•
1∑

a,b=0

nab(yj , yk) = 1

• φ11,jk(σ, yj , yk) = f(yj , yk, σ)

• φ01,jk(σ, yj , yk) = φ01,jk(σ, yk) =

∫
[aj ,bj ]c

f(x, yk, σ)dx

• φ10,jk(σ, yj , yk) = φ10,jk(σ, yj) =

∫
[ak,bk]c

f(yj , y, σ)dy

• φ00,jk(σ, yj , yk) = φ00,jk(σ) =

∫∫
[aj ,bj ]c×[ak,bk]c

f(x, y, σ)dxdy.
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The likelihood (and log-likelihood) of a couple of variables of Y involves four terms
according to the nullity of each of the components of the couple. In the same way, the
likelihood of Y would involve 2p terms by distinguishing all possible cases: the density
of the Gaussian vector X (no component of Y is null), p simple integrals (only one null

component),

(
p

2

)
double integrals (two null components),

(
p

3

)
triple integrals, ..., one

p-multiple integral (all the components are null). Writing the likelihood of the vector Y
becomes than quite complicated and tedious. This is why we choose to restrict to the
study of the likelihoods of couples for the estimation.

In practice, we have a n-sample Y := (Y (1), . . . , Y (n)) of the vector Y . The likelihood

of the n-sample
(
(Y

(i)
j , Y

(i)
k )
)
i=1,...,n

is then L(n)
jk (Σ∗jk,y) defined by:

L(n)
jk (σ,y) =

n∏
i=1

Ljk(σ, y(i)),

=

n∏
i=1

1∑
a,b=0

φab,jk(σ, y
(i)
j , y

(i)
k )nab(y

(i)
j , y

(i)
k ),

where y := (y(1), . . . , y(n)) is the realisation (value) of the n-sample Y. The log-likelihood

is then L
(n)
jk (Σ∗jk,y) where:

L
(n)
jk (σ,y) =

n∑
i=1

1∑
a,b=0

nab(y
(i)
j , y

(i)
k ) log

(
φab,jk(σ, y

(i)
j , y

(i)
k )
)

=

n∑
i=1

i:y
(i)
j =y

(i)
k =0

log
(
φ00,jk(σ)

)
+

n∑
i=1

i:y
(i)
j =0,y

(i)
k 6=0

log
(
φ01,jk(σ, y

(i)
k )
)

+

n∑
i=1

i:y
(i)
j 6=0,y

(i)
k =0

log
(
φ10,jk(σ, y

(i)
j )
)

+

n∑
i=1

i:y
(i)
j 6=0,y

(i)
k 6=0

log
(
φ11,jk(σ, y

(i)
j , y

(i)
k )
)
.

2.3. Estimation procedure

Our goal is to recover the latent graph structure of the Gaussian vector X, encoded in
the precision matrix Θ∗, from observations of the truncated vector Y . Our estimation
procedure is a two step procedure. In the first instance, we estimate the covariance
matrix of the Gaussian vector X. Then, we estimate the precision matrix by using the
graphical lasso procedure (Friedman, J., Hastie, T. and Tibshirani, R., 2008) to recover
the underlying graph structure.
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2.3.1. Step 1: covariance matrix estimation

Estimating the covariance matrix Σ∗ of X as the empirical covariance matrix of the n-
sample Y would lead to poor results because of the zero-inflation.

Another idea could be to maximise the likelihood of the vector Y . But we have seen
that this likelihood involves 2p terms and is too tedious.

Because of these difficulties, we estimate the covariance matrix by estimating each
of its entries separately using the likelihood of the couples (Yj , Yk), j < k defined in

(2.3). More precisely, we estimate Σ∗ by Σ̃(n) by estimating each of its entries Σ∗jk by

maximisation of the log-likelihood of the n-sample
(
(Y

(i)
j , Y

(i)
k )
)
i=1,...,n

of the couple

(Yj , Yk), which is not convex.

Definition 2.1 (Estimator Σ̃(n) of Σ∗). The estimator Σ̃(n) = (Σ̃
(n)
jk )1≤j,k≤p of the

covariance matrix Σ∗ is defined by:

Σ̃
(n)
jk = argmax

|σ|≤1

L
(n)
jk (σ,y) (2.4)

= argmax
|σ|≤1

1

n
L

(n)
jk (σ,y),

for all j < k, where y := (y(1), . . . , y(n)) is the realisation of the n-sample Y.

2.3.2. Step 2: precision matrix estimation

As our goal is to recover the conditional dependency graph, it is natural to use the esti-
mator of the precision matrix Θ∗ given by the graphical lasso (Friedman, J., Hastie, T.
and Tibshirani, R., 2008). The graphical lasso is a procedure used in the Gaussian graph-
ical model. It consists in estimating the precision matrix by maximising the penalised
log-likelihood of the Gaussian model over the set p× p non-negative definite symmetric
matrices:

argmax
Θ�0

log det(Θ)− trace(ΘS)− λn||Θ||1,off,

where ||Θ||1,off =
p∑

j,k=1
j 6=k

|Θjk|, S is the empirical covariance matrix of X and λn > 0 the

regularisation parameter. This optimisation problem is convex and has an unique solu-
tion (Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B., 2011).

In our case, the empirical covariance matrix of X is not directly available. Instead of
obtaining this matrix as the empirical covariance matrix of Y , we replace the empirical
covariance matrix S by the estimator Σ̃(n) of Σ∗ obtained at the step 1 (2.4).
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Definition 2.2 (Estimator Θ̃(n) of Θ∗). The estimator Θ̃(n) of the precision matrix
Θ∗ is defined as the unique solution of the following convex optimisation problem:

Θ̃(n) = argmax
Θ�0

log det(Θ)− trace(ΘΣ̃(n))− λn||Θ||1,off. (2.5)

Theoretical results of Section 3 relate the estimators Σ̃(n) and Θ̃(n) respectively defined
in (2.4) and (2.5) when the points of truncation (aj)1≤j≤p and (bj)1≤j≤p are known.

3. Convergence results

The goal of this Section is to show that the estimation procedure proposed in Subsection
2.3 has strong theoretical guarantees. For that, we study theoretical properties of the
estimator Θ̃(n) with regard to the recovery of the graph structure. Assume that the
points of truncation (aj)1≤j≤p and (bj)1≤j≤p are known.

3.1. Covariance matrix estimator

3.1.1. Convergence rates in elementwise infinite norm

In a first place, we give a result about the estimator Σ̃(n) of the covariance matrix Σ∗

given by (2.4). Let us first set out two assumptions:

(H1) For all j < k, |Σ∗jk| 6= 1. Thus, there exists δ > 0 such that for all j < k,
|Σ∗jk| < 1− δ.

(H2) Let j < k and consider the application g : σ ∈ [−1 + δ, 1 − δ] 7→ E
(
L

(n)
jk (σ,y)

)
.

Then, we assume that:

• −1 + δ and 1− δ are not critical points of g,

• g has a finite number of critical points,

• every critical points of g, different from Σ∗jk, are non-degenerate, i.e.:

for all σ 6= Σ∗jk, g′(σ) = 0⇒ g′′(σ) 6= 0.

Note that Σ∗jk is a non-degenerate critical point of g. This will be proved in the
proof of Proposition 3.1 (see equations (3.7)).

Proposition 3.1 states rate convergence results about the estimator Σ̃(n) of the covari-
ance matrix Σ∗ by bounding

∣∣∣∣Σ̃(n) − Σ∗
∣∣∣∣
∞ with high probability.
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Proposition 3.1. Assume (H1) and (H2) and let 0 < ρ < 1. There exist some known

constants B, C and D such that letting
n

log n
≥ C log

(B
ρ

)
, then the estimator of the

covariance matrix Σ̃(n) defined by (2.4) satisfies:

P

(∣∣∣∣Σ̃(n) − Σ∗
∣∣∣∣
∞ ≥ D

√
log n

n
log
(B
ρ

))
≤ p(p− 1)

2
ρ,

where ||A||∞ = max
j,k∈{1,...,p}

|Ajk| is the elementwise infinite norm of the matrix A.

3.1.2. Proof of Proposition 3.1

Proof relies on Theorem 2 of Mei, S., Bai, Y. and Montanari, A. (2017), who study the
properties of the stationary points of non-convex empirical risk minimisation problems.
We begin with three auxiliary Lemmas, proved in Appendix, which all state properties
about the bivariate marginal likelihood defined in (2.3) or components of it:

Lemma 3.1. There exists γ > 0 such that, for all j < k, if (yj , yk) ∈ [aj , bj ]× [ak, bk]

and σ ∈ [−1 + δ, 1− δ], then for all a, b ∈ {0, 1}, φab,jk(σ, yj , yk) ≥ 1

γ
.

Lemma 3.2. There exist L1, L2 and L3 > 0 such that for all j < k, if (yj , yk) ∈
[aj , bj ]× [ak, bk] and σ ∈ [−1 + δ, 1− δ], then for all a, b ∈ {0, 1},∣∣∣∂mσ φab,jk(σ, yj , yk)

∣∣∣ ≤ Lm, for m ∈ {1, 2, 3}.

Lemma 3.3. Let j < k.

1. For all σ ∈ [−1 + δ, 1− δ] and for all l ∈ N∗,∫
R2

∂lσLjk(σ, y)dµ(y) = ∂lσ

∫
R2

Ljk(σ, y)dµ(y) = 0,

where µ is the measure on R2 defined by:

µ := δ0 ⊗ δ0 + δ0 ⊗ λ+ λ⊗ δ0 + λ⊗ λ, (3.1)

where δa denotes the Dirac measure in a ∈ R and λ the Lebesgue measure on R.
2. For all σ ∈ [−1 + δ, 1− δ] and for all l ∈ N∗,

∂lσEΣ∗
jk

(
logLjk(σ, Y )

)
= EΣ∗

jk

(
∂lσ logLjk(σ, Y )

)
,

i.e.,

∂lσ

∫
R2

logLjk(σ, y)Ljk(Σ∗jk, y)dµ(y) =

∫
R2

∂lσ

(
logLjk(σ, y)

)
Ljk(Σ∗jk, y)dµ(y).
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Fix j < k. With notations of Mei, S., Bai, Y. and Montanari, A. (2017), let us set:

`jk(σ,y) = logLjk(σ,y)

=

1∑
a=0

1∑
b=0

nab(yj , yk) log
(
φab,jk(σ, yj , yk)

)
(3.2)

R̂n(σ,Y) =
1

n
L

(n)
jk (σ,Y) =

1

n

n∑
i=1

`(σ, Y (i)) (3.3)

R(σ) = EΣ∗
jk

(
R̂n(σ,Y)

)
= EΣ∗

jk

(
`(σ, Y )

)
. (3.4)

Remarks 3.1. • To lighten notations, we drop the underscripts jk and simply write
`, R̂n and R instead of `jk, R̂n,jk and Rjk.

• Point 2 of Lemma 3.3 can be rewritten as:
For all σ ∈ [−1 + δ, 1− δ] and for l ∈ N∗:

R(l)(σ) = ∂lσEΣ∗
jk

(
`(σ, Y ))

)
= EΣ∗

jk

(
∂lσ`(σ, Y ))

)
. (3.5)

Theorem 2 of Mei, S., Bai, Y. and Montanari, A. (2017) requires four assumptions.
Let us check these assumptions.

(i) Gradient statistical noise. The gradient of ` w.r.t. σ is τ2-sub-Gaussian for
some τ > 0, i.e.:

∀σ ∈ [−1 + δ, 1− δ], ∀λ ∈ R, E

[
exp

(
λ
(
∂σ`(σ, Y )− E

(
∂σ`(σ, Y )

)))]
≤ exp

(τ2λ2

2

)
.

Indeed, for all y ∈
p∏
j=1

[aj , bj ] and σ ∈ [−1 + δ, 1− δ],

∂σ`(σ, y) =

1∑
a=0

1∑
b=0

nab(yj , yk)
∂σφab,jk(σ, yj , yk)

φab,jk(σ, yj , yk)

Thus:
∣∣∣∂σ`(σ, y)

∣∣∣ ≤ 1∑
a=0

1∑
b=0

nab(yj , yk)

∣∣∂σφab,jk(σ, yj , yk)
∣∣∣∣φab,jk(σ, yj , yk)
∣∣

≤
1∑
a=0

1∑
b=0

nab(yj , yk)γL1 = γL1 by Lemmas 3.1 and 3.2.

This way, ∂σ`(σ, Y ) − E(∂σ`(σ, Y )) is zero-mean and bounded by 2γL1. By Theo-
rem 9.9 of Stromberg K. (1994), ∂σ`(σ, Y ) − E(∂σ`(σ, Y )) is then τ2-sub-Gaussian for
τ = 2γL1. Assumption “Gradient statistical noise” is satisfied.
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(ii) Hessian statistical noise. The second derivative of ` w.r.t. σ is τ2-sub-exponential
(τ = 2γL1), that is:

||∂2
σ`(σ, Y )||ψ1

≤ τ2,

where ||.||ψ1
is the Orlicz ψ1-norm defined by ||X||ψ1

:= sup
k≥1

1

k
E
(∣∣X − E(X)

∣∣k) 1
k

.

For all y ∈
p∏
j=1

[aj , bj ] and σ ∈ [−1 + δ, 1− δ],

∂2
σ`(σ, y) =

1∑
a=0

1∑
b=0

nab(yj , yk)

(
∂2
σφab,jk(σ, yj , yk)

φab,jk(σ, yj , yk)
−
(∂σφab,jk(σ, yj , yk)

φab,jk(σ, yj , yk)

)2
)

Thus:
∣∣∣∂2
σ`(σ, y)

∣∣∣ ≤ 1∑
a=0

1∑
b=0

nab(yj , yk)

(∣∣∂2
σφab,jk(σ, yj , yk)

∣∣∣∣φab,jk(σ, yj , yk)
∣∣ +

(∣∣∂σφab,jk(σ, yj , yk)
∣∣∣∣φab,jk(σ, yj , yk)
∣∣ )2

)

≤
1∑
a=0

1∑
b=0

nab(yj , yk)(γL2 + γ2L2
1) by Lemmas 3.1 and 3.2

= γL2 + γ2L2
1. (3.6)

Therefore, ∂2
σ`(σ, Y )− E(∂2

σ`(σ, Y )) is bounded by 2(γL2 + γ2L2
1) and for all k ≥ 1,

1

k
E
(∣∣∂2

σ`(σ, Y )− E(∂2
σ`(σ, Y ))

∣∣k) 1
k ≤ 2

k
(γL2 + γ2L2

1).

Hence, ||∂2
σ`(σ, Y )||ψ1 ≤ 2(γL2 + γ2L2

1) ≤ τ2 = 4γ2L2
1 (we can possibly choose L1 and

γ larger). So, ∂2
σ`(σ, Y ) is τ2-sub-exponential. Assumption “Hessian statistical noise” is

satisfied.

(iii) Hessian regularity.

1. The second derivative of R (defined in (3.4)) is bounded at one point:

there exists |σ∗| ≤ 1− δ and H > 0 such that
∣∣∣R′′(σ∗)∣∣∣ ≤ H.

2. The second derivative of ` w.r.t. σ is Lipschitz continuous with integrable Lipschitz
constant (w.r.t. y), i.e.:

there exists J∗ > 0 such that E[J(Y )] ≤ J∗,

where J(y) = sup
|σ1|,|σ2|≤1−δ

σ1 6=σ2

|∂2
σ`(σ1, y)− ∂2

σ`(σ2, y)|
|σ1 − σ2|

.

3. Constants H and J∗ satisfy: H ≤ τ2 and J∗ ≤ τ3.
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First, R′′(σ) = EΣ∗
jk

(
∂2
σ`(σ, Y )

)
by the point 2 of Lemma 3.3 and (3.5). By (3.6),∣∣∣∂2

σ`(σ, Y )
∣∣∣ ≤ γL2 + γ2L2

1 for all σ ∈ [−1 + δ, 1 − δ], thus any |σ∗| ≤ 1 − δ and

H = γL2 + γ2L2
1 are appropriate. Moreover, we have H ≤ τ2 = 4γ2L2

1 (with L1 and γ
possibly chosen larger).

For all y ∈
p∏
j=1

[aj , bj ] and σ ∈ [−1 + δ, 1 − δ], we have (with a slight lightening of

notations):

∂3
σ`(σ, y) =

1∑
a=0

1∑
b=0

nab(yj , yk)

(
∂3
σφab,jk
φab,jk

− 3
∂σφab,jk∂

2
σφab,jk

φ2
ab,jk

+ 2
(∂σφab,jk
φab,jk

)3
)

Thus:
∣∣∣∂3
σ`(σ, y)

∣∣∣ ≤ 1∑
a=0

1∑
b=0

nab(yj , yk)(γL3 + 3γ2L1L2 + 2γ3L3
1) (Lemmas 3.1 and 3.2)

= γL3 + 3γ2L1L
2
2 + 2γ3L3

1.

Therefore, for all y ∈
p∏
j=1

[aj , bj ], J(y) ≤ γL3 + 3γ2L1L
2
2 + 2γ3L3

1 by the mean value

theorem. Taking J∗ = γL3 + 3γ2L1L
2
2 + 2γ3L3

1 with L1 and γ possibly chosen larger, we
have J∗ ≤ τ3 = 8γ3L3

1. Assumption “Hessian regularity” is satisfied.

(iv) Morse. There exists ε > 0 and η > 0 such that R is (ε, η) strongly Morse, i.e.:

1. |R′(σ)| > ε for all σ such that |σ| = 1− δ and,
2. for all σ such that |σ| < 1− δ:

|R′(σ)| ≤ ε⇒ |R′′(σ)| ≥ η.

In other words, R satisfies this assumption if −1 + δ and 1− δ are not critical points
of R and if R has a finite number of critical points, which are moreover non-degenerate:

R′(σ) = 0⇒ R′′(σ) 6= 0.

Assumption (H2) implies point 1. and point 2. for σ 6= Σ∗jk. Let us prove that Σ∗jk is
a non-degenerate critical point by showing that Σ∗jk is a global maximum of R. Indeed,
for all σ such that |σ| < 1:

R(σ) ≤ R(Σ∗jk)⇐⇒ EΣ∗
jk

(
`(σ, Y )

)
≤ EΣ∗

jk

(
`(Σ∗jk, Y )

)
⇐⇒ EΣ∗

jk

(
logLjk(σ, Y )

)
≤ EΣ∗

jk

(
logLjk(Σ∗jk, Y )

)
since `(σ, y) = logLjk(σ, y) (defined in (3.2)),

⇐⇒ EΣ∗
jk

(
log

Ljk(σ, Y )

Ljk(Σ∗jk, Y )

)
≤ 0.


(3.7)
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By Jensen inequality,

EΣ∗
jk

(
log

Ljk(σ, Y )

Ljk(Σ∗jk, Y )

)
≤ logEΣ∗

jk

(
Ljk(σ, Y )

Ljk(Σ∗jk, Y )

)

= log

∫
R2

Ljk(σ, y)dµ(y) = 0, (3.8)

since y 7→ Ljk(σ, y) is a probability density function (see (C.1)) w.r.t. the measure µ on
R2 defined in (3.1).

Equation (3.8) implies (3.7). Σ∗jk is thus a global maximum of R and R′(Σ∗jk) = 0. Let
us prove that R′′(Σ∗jk) 6= 0:

R′′(Σ∗jk) = EΣ∗
jk

(
∂2
σ`(Σ

∗
jk, Y )

)
by point 2 of Lemma 3.3

= EΣ∗
jk

(
∂2
σLjk(Σ∗jk, Y )

Ljk(Σ∗jk, Y )
−
(
∂σLjk(Σ∗jk, Y )

Ljk(Σ∗jk, Y )

)2
)

= −EΣ∗
jk

((
∂σLjk(Σ∗jk, Y )

Ljk(Σ∗jk, Y )

)2
)
,

since EΣ∗
jk

(
∂2
σLjk(Σ∗jk, Y )

Ljk(Σ∗jk, Y )

)
=

∫
R2

∂2
σLjk(Σ∗jk, y)dµ(y) = 0 by point 1 of Lemma 3.3.

If we assume that R′′(Σ∗jk) = 0, then ∂σLjk(Σ∗jk, Y ) = 0 a.s., which contradicts the
definition of Ljk(Σ∗jk, Y ) given in (2.3).

Accordingly, there exists ε > 0 and η > 0 such that R is (ε, η) strongly Morse. As-
sumption “Morse” is satisfied.

For each couple (j, k) such that j < k, Theorem 2 of Mei, S., Bai, Y. and Montanari,

A. (2017) applied to the estimator Σ̃
(n)
jk yields:

Let 0 < ρ < 1. There exists an universal constant C0 such that letting
n

log n
≥

4C0

[
log
(τ(1− δ)

ρ

)
∨ 1
](τ2

ε2
∨ τ

4

η2
∨ τ

2L2

η4

)
with τ = 2γL1 and L = sup

σ:|σ|≤1−δ

∣∣R(3)(σ)
∣∣,

P

(∣∣Σ̃(n)
jk − Σ∗jk

∣∣ ≤ 2τ

η

√
C0

log n

n

[
log
(τ(1− δ)

ρ

)
∨ 1
])
≥ 1− ρ.

It follows that, for 0 < ρ < 1 and n such that
n

log n
≥ 4C0

[
log
(τ(1− δ)

ρ

)
∨ 1
](τ2

ε2
∨

τ4

η2
∨ τ

2L2

η4

)
, then:

P

(∣∣∣∣Σ̃(n) − Σ∗
∣∣∣∣
∞ ≤

2τ

η

√
C0

log n

n

[
log
(τ(1− δ)

ρ

)
∨ 1
])
≥ 1− ρp(p− 1)

2
,
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where ||A||∞ = max
j,k∈{1,...,p}

|Ajk| denotes the elementwise infinite norm of the matrix A.

This finishes the proof of Proposition 3.1.

3.2. Precision matrix estimator and graph recovery

Before giving a result about the estimator of the precision matrix Θ∗, let us state a third
and last assumption:

(H3) There exists some α ∈]0, 1] such that:

max
e∈Sc

∣∣∣∣Γ∗eS(Γ∗SS)−1
∣∣∣∣

1
=
∣∣∣∣∣∣Γ∗ScS(Γ∗SS)−1

∣∣∣∣∣∣
∞ ≤ 1− α,

where:

• if M ∈ Mr,m(R), A ⊂ J1, rK and B ⊂ J1,mK, MAB denotes the matrix
(mij)i∈A,j∈B ,

• S = S(Θ∗) := E(Θ∗) ∪ {(1, 1), . . . , (p, p)} where Θ∗ = (Σ∗)−1 and E(Θ∗) is
the set of the edges of the theoretical graph (see (2.2)). Let s := |E(Θ∗)|,
hence |S(Θ∗)| = |E(Θ∗)|+ p = s+ p,

• Sc = Sc(Θ∗) = J1, pK2 \ S(Θ∗),

• Γ∗ = Σ∗ ⊗ Σ∗ where ⊗ denotes the Kronecker matrix product. We have:
Γ∗(j,k),(l,m) = cov(XjXk, XlXm) and thus Γ∗SS ∈Ms+p,s+p(R),

• ||u||1 =
∑d
j=1 |uj | for all u ∈ Rd is the `1-norm,

• |||U |||∞ = max
j=1,...,d

m∑
k=1

|Ujk| for all U ∈Md,m(R).

The underlying intuition is that this assumption (H3) limits the influence that the
non-edge terms, indexed by Sc, can have on the edge-based terms, indexed by S (Raviku-
mar, P., Wainwright, M. J., Raskutti, G. and Yu, B., 2011).

Proposition 3.2, set out below, provides an upper-bound for the elementwise maximum
norm of the precision matrix estimator Θ̃(n) obtained by the graphical lasso procedure
(2.5). It also shows its sparsistency with respect to graphical model structure recovery.
Here are some preliminary notations:

• d is the maximum degree:

d = max
j=1,...,p

∣∣∣{k ∈ J1, pK : Θ∗jk 6= 0}
∣∣∣. (3.9)

• κΣ∗ and κΓ∗ are defined by:

κΣ∗ := |||Σ∗|||∞ = max
j=1,...,p

p∑
k=1

|Σ∗jk|, (3.10)

κΓ∗ :=

∣∣∣∣∣∣∣∣∣∣∣∣(Γ∗SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞
. (3.11)
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Proposition 3.2. Assume (H3) and assume that there exist some strictly positive

constants B, C, D and c > 2 such that letting
n

log n
≥ C log

(
Bpc

)
, we have:

P

(∣∣∣∣Σ̃(n) − Σ∗
∣∣∣∣
∞ ≥ D

√
log n

n
log
(
Bpc

))
≤ p(p− 1)

2pc
, (3.12)

where ||A||∞ = max
j,k∈{1,...,p}

|Ajk| denotes the elementwise infinite norm of the matrix A.

Assume that the sample size n is lower bounded as
n

log n
> D2 log

(
Bpc

)
max

{√C
D

, 6(1+

8α−1)dmax{κΣ∗κΓ∗ , κ3
Σ∗κ2

Γ∗}
}2

, and denote Θ̃(n) the unique solution of (2.5) and λn =

8D

α

√
log n

n
log
(
Bpc

)
the regularisation parameter involved in (2.5). Then, with proba-

bility greater than 1− 1

pc−2
, we have:

(a) The estimator Θ̃(n) of Θ∗ satisfies:

||Θ̃(n) −Θ∗||∞ ≤ 2D(1 + 8α−1)κΓ∗

√
log n

n
log
(
Bpc

)
.

(b) The estimated edges set is a subset of the true edges set: E(Θ̃(n)) ⊂ E(Θ∗) and

E(Θ̃(n)) includes all edges (j, k) with:

∣∣Θ∗jk∣∣ > 2D(1 + 8α−1)κΓ∗

√
log n

n
log
(
Bpc

)
.

Proof relies on results of Theorem 1 of Ravikumar, P., Wainwright, M. J., Raskutti,
G. and Yu, B. (2011), in which they study the precision matrix estimation problem in
the multivariate Gaussian setting.

Proof. (Proposition 3.2) Let us check the two assumptions of Theorem 1 of Ravikumar,
P., Wainwright, M. J., Raskutti, G. and Yu, B. (2011).

• Incoherence assumption. This assumption is exactly our assumption (H3).

• Control of sampling noise. A careful reading of Ravikumar, P., Wainwright, M.
J., Raskutti, G. and Yu, B. (2011) reveals that the tail conditions of their Theorem 1 is
not necessary. The required assumption, stated below, is in fact weaker, and is given in
Lemma 8 of Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B. (2011):

There exists v∗ > 0 such that for all c > 2 and n such that β̄f (n, pc) ≤ 1

v∗
, we have:

P
[
||Σ̃(n) − Σ∗||∞ ≥ β̄f (n, pc)

]
≤ 1

pc−2
,
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where β̄f (n, r) := argmax{β : f(n, β) ≤ r} for some function f(n, β).

Setting f(n, β) =
1

B
exp

(
n

log n

( β
D

)2
)

and v∗ =

√
C

D
and noticing that

p(p− 1)

2
≤

p2, Assumption (3.12) gives this result. Indeed:

• β̄f (n, r) = argmax{β : f(n, β) ≤ r} = D

√
log n

n
log
(
Br
)

• n

log n
≥ C log

(
Bpc

)
⇐⇒ β̄f (n, pc) ≤ D√

C

Assumption “Control of sampling noise” is satisfied.

At last, let us set n̄f (β, r) := argmax{n : f(n, β) ≤ r}. Then, the condition n >

n̄f (β, r) is equivalent to
n

log n
> log

(
Br
)D2

β2
since f(n, β) ≤ r ⇐⇒ n

log n
≤ log

(
Br
)D2

β2
.

We complete the proof by applying Theorem 1 of Ravikumar, P., Wainwright, M. J.,
Raskutti, G. and Yu, B. (2011).

Finally, Propositions 3.1 and 3.2 provide the following theorem, which establishes
consistency of the estimator Θ̃(n) in the elementwise maximum-norm:

Theorem 3.1. Assume (H1), (H2) and (H3). Let c > 2, Θ̃(n) the unique solution
of (2.5) and α, d, κΣ∗ and κΓ∗ respectively defined in (H3), in (3.9), in (3.10) and
in (3.11). There exists some known constants B, C and D such that letting n lower

bounded as
n

log n
> D2 log

(
Bpc

)
max

{√C
D

, 6(1 + 8α−1)dmax{κΣ∗κΓ∗ , κ3
Σ∗κ2

Γ∗}
}2

and

λn =
8D

α

√
log n

n
log
(
Bpc

)
the penalisation parameter of the equation (2.5), we have,

with probability greater than 1− 1

pc−2
:

(a) The estimator Θ̃(n) of Θ∗ satisfies:

||Θ̃(n) −Θ∗||∞ ≤ 2D(1 + 8α−1)κΓ∗

√
log n

n
log
(
Bpc

)
.

(b) E(Θ̃(n)) ⊂ E(Θ∗) and E(Θ̃(n)) includes all edges (j, k) with:

∣∣Θ∗jk∣∣ > 2D(1 + 8α−1)κΓ∗

√
log n

n
log
(
Bpc

)
.

In other words, the graph structure of latent Gaussian encoded in Θ∗ is consistently

recovered as long as:
∣∣Θ∗jk∣∣ > 2D(1 + 8α−1)κΓ∗

√
log n

n
log
(
Bpc

)
.
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The parameter c of Theorem 3.1 is a user-defined parameter. The larger c is, the larger
the probability for which results of Theorem 3.1 hold is. However, large values of this
parameter lead to more stringent requirements on the sample size n.

4. Simulation studies

4.1. Simulation settings

In almost all of this Section (unless otherwise stated), we use the following simulation
settings. We simulate n = 500 observations of a p = 100-Gaussian vector X centered
and scaled. Graph structure is a chain, that is X1 ←→ X2 ←→ · · · ←→ X100. The graph
contains then 99 edges. Data have been simulated with the R function huge.generator,
option graph = "band" of the package huge.

Two different settings of the points of truncation are presented:

• identical points of truncation: a = −0.5 and b = 2,
• decreasing points of truncation: a = −1, b = seq(2,0.5, length = p).

We then apply the estimation procedure described in Subsection 2.3. We assume that
the points of truncation are known and we use the estimators Σ̃(n) and Θ̃(n) of the co-
variance and precision matrices, respectively defined at Step 1 (2.4) and at Step 2 (2.5).

For the estimation of the precision matrix with the graphical lasso procedure, we use
the function huge of the same package, option method = "glasso". Unfortunately, the-
oretical results of Section 3 do not give an explicit choice of the penalty parameter. We
thus choose the penalty parameter with “stars” and “ebic” methods, implemented in the
package huge.

Simulations address several problems. Let first explicit the two different procedures
used for these simulations, respectively called “our procedure” and “graphical lasso di-
rectly on truncated data” (shortened in “Glasso”). The first one is our procedure, which
consists in replacing the empirical covariance matrix of X in the graphical lasso by our
estimator Σ̃(n). The second one is the graphical lasso directly applied to the truncated
data, which consists in replacing the empirical covariance matrix of X in the graphical
lasso by the empirical covariance matrix of the truncated vector Y . Here are the problems
addressed in the following subsections:

• Efficiency of our procedure. Does using our estimator for the covariance matrix
really improve graph estimation?

• Impact of the points of truncation, that is how the values of the truncation points
impact edges detection.

• Is our procedure as efficient with other graph structures?
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(a) Our procedure, identical points of truncation:
a = −0.5 and b = 2.
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(b) Glasso, identical points of truncation: a =
−0.5 and b = 2.

Figure 1. Comparison of detection rates obtained by our procedure and by graphical lasso directly on
truncated data. Identical points of truncation setting. Detection rates are obtained on 50 i.i.d. repetitions
for n = 500 observations of p = 100 variables. True edges are represented with red triangles, (false) edges
of type Xi −Xi+2 with blue crosses and other false edges with black circles.

To study efficiency of these procedures on graph estimation, we make 50 i.i.d. repeti-

tions of the procedure and we represent the detection rates of each of the

(
100

2

)
= 4950

potential edges.

4.2. Efficiency

In this subsection, we aim at illustrating the efficiency of our procedure. For that, we
compare detection rates of each potential edges obtained with our procedure and with
graphical lasso directly on truncated data.

Results and comments. Figures 1 and 2 illustrate detection rates for our procedure
and for graphical lasso directly on truncated data Y . We represent detection rates of
each potential edge by unfolding the matrix with upper.tri, which implies that the
first potential edge whose detection rate is displayed is X2 ←→ X1, then X3 ←→ X1,
X3 ←→ X2, X4 ←→ X1, . . . , X4 ←→ X3 and so on. The 99 true theoretical edges,
that is edges Xi ←→ Xi+1, are displayed with red triangles and in the following order
X1 ←→ X2,X2 ←→ X3, ...,X99 ←→ X100. Detection rates of edges of typeXi ←→ Xi+2,
which are not true edges, are displayed with blue crosses. We distinguish these edges be-
cause these interactions can be relatively strong because of the indirect link through
Xi+1.
Figure 1 shows identical points of truncation setting. We can observe that our method
gives better results: true edges are better detected and other edges are less detected than
with Glasso. For example, true edges are all detected more than 96% whereas Glasso
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(a) Our procedure, decreasing points of trunca-
tion: a = −1, b = seq(2,0.5, length = p).
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(b) Glasso, decreasing points of truncation: a =
−1, b = seq(2,0.5, length = p).

Figure 2. Comparison of detection rates obtained by our procedure and by graphical lasso directly
on truncated data. Decreasing points of truncation setting. Detection rates are obtained on 50 i.i.d.
repetitions for n = 500 observations of p = 100 variables. True edges are represented with red triangles,
(false) edges of type Xi −Xi+2 with blue crosses and other false edges with black circles.

detects them between 80% and 100%: 66 of them are detected at most 90%. Edges of
type Xi ←→ Xi+2 tend to be more detected with Glasso.
Figure 2 shows decreasing points of truncation setting. Efficiency of our procedure is
even more convincing in this setting. Indeed, true edges are much better detected by
our procedure (more thant 80% whereas only 60 true edges are detected at most 80%
by Glasso). These differences are probably due to the zero rate in the truncated data Y
which grows from 20% to 50% according to the variables. Consequently, edges between
variables whose zeros rate is high (that is edges Xi ←→ Xi+1 for i close to 100) tend to
be less detected. The phenomenon is even stronger with Glasso. Besides, the other edges
(the false ones) tend to be slightly less detected with Glasso. For our procedure, the false
edges are more detected when the truncation points induce a high rate of zero for the
involved variables.

4.3. Impact of points of truncation

To expand this section, we illustrate the impact of the points of truncation values. For
that, we briefly compare results obtained for both “identical” and “decreasing” settings.
Observations of the underlying Gaussian vector are the same and we only change values
of the points of truncation according to the chosen setting.

Results and comments. Figures 1(a) and 2(a) respectively show detection rates for
“identical” and “decreasing” points of truncation settings.
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(a) Points of truncation setting: a = −1 and b =
1.
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(b) Identical points of truncation: a = −0.5 and
b = 2.

Figure 3. Comparison of detection rates for two points of truncation settings for which the zero inflation
is similar (around 32%). Detection rates are obtained on 50 i.i.d. repetitions for n = 500 observations of
p = 100 variables. True edges are represented with red triangles.

The zero inflation of truncated data Y of the first setting is around 33%. Zero inflation
of truncated data of the “decreasing” setting decreases from 20% (for Y1) to 50% (for
Y100). Detection rates of potential edges are represented by unfolding the matrix with
upper.tri, which implies that the first potential edge whose detection rate is displayed
is X2 ←→ X1, then X3 ←→ X1, X3 ←→ X2, X4 ←→ X1, . . . , X4 ←→ X3 etc. The 99
true theoretical edges, that is the edges Xi ←→ Xi+1, are displayed with red triangles
and in the following order X1 ←→ X2, X2 ←→ X3, . . . , X99 ←→ X100. Thus, we can
observe that edges involving variables whose zero inflation is close to 50% have worse
detection rates: true edges are less detected whereas false edges have higher detection
rates.
In short and as expected, zero inflation impacts detection rates: the more the zero inflation
is, worse is the detection rate.
An other phenomenon, not noticeable in Figures 1(a) and 2(a) occurs. This phenomenon
is also linked to zero inflation and is noticeable in Figure 3. It points out that detection
rates does not only depend on zero inflation but also on the observation window. Indeed,
Figure 3 exhibits detection rates for “identical” points of truncation setting, that is
a = −0.5 and b = 2, and for an other setting a = −1 and b = 1. For both settings, zero
inflation is about 32%. However, results obtained for “identical” points of truncation are
much better. The underlying idea is that the observation of the Gaussian variable gives
more informations between −0.5 and 2 than between −1 and 1, especially for covariances
estimation.
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(a) “Random” graph structure. (b) “Hub” graph structure.

Figure 4. Graphical representation of the two graphs used in this subsection: “random” and “hub”.

4.4. Other graph structures

Previously, we restrict to only one graph structure, the chain structure which tends to
give satisfactory results in general. To fulfil these simulation studies, we present some
results with other graph structures:

• The “random” structure. There exists an edge between two variables with probabil-
ity 1/50. Data have been simulated with the R function huge.generator, options
graph = ’random’, prob = 1/50. Resulting graph has 103 edges.

• The “hub” structure. Variables are split into 4 groups of 25. Inside each group,
one of the variable is a “hub” and is connected to all the variables of its group.
Data have been simulated with the R function huge.generator, options graph =

’hub’, g = 4. Resulting graph has 96 edges.

These graphs are displayed in Figure 4. Points of truncation are set to identical (a = −0.5
and b = 2). We simulate n = 500 observations of p = 100 variables and we compare de-
tection rates of each potential edge obtained with our procedure and with graphical lasso
directly on truncated data like in Subsection 4.2.

Results and comments. Figure 5 displays these comparisons for “random” and “hub”
graph structures.
Results obtained with our procedure are indeed slightly less satisfying than with “chain”
structure. Detection rates with “hub” graph structure are a little better than with “ran-
dom”. For “random”, all the false edges are detected less than 10% and true edges are
all detected more than 46% except for the edge X34 ←→ X85 (22%). This edge is also
slightly less detected (92% whereas at least 98% for the other true edges) when we di-
rectly apply graphical lasso on untruncated Gaussian data X (see Figure 6(a)). Thus,
this low detection rate is not only due to our procedure but probably also to the data
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(a) “Random” graph structure.
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(b) “Hub” graph structure.

Figure 5. Comparison of detection rates obtained by our procedure (left) and by graphical lasso (right)
directly on truncated data. Identical points of truncation setting. “random” and “hub” graph structures.
Detection rates are obtained on 50 i.i.d. repetitions for n = 500 observations of p = 100 variables. True
edges are represented with red triangles.
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(a) “Random” graph structure.
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(b) “Hub” graph structure.

Figure 6. Detection rates obtained with graphical lasso on Gaussian data X. “random” and “hub”
graph structures. Detection rates are obtained on 50 i.i.d. repetitions for n = 500 observations of p = 100
variables. True edges are represented with red triangles.

itself. “Hub” structure gives good results: false edges are detected at most 8% and true
edges at most 84%, which is also the case when we apply graphical lasso on untruncated
data X (see Figure 6(b)).
In comparison, Glasso (on truncated data Y ) always gives less good results. For “ran-
dom”, the edge X34 ←→ X85 is for example never detected and the other true edges are
detected between 14% and 82%. “Hub” structure exhibits the most striking difference:
true edges are detected at most 54% (but at least 22%).

5. Discussion

In this paper, we proposed a procedure for graph estimation in a zero-inflated Gaussian
model. In this model, zero-inflation is obtained by double truncation (left and right)
of Gaussian data. More precisely, the goal is to retrieve the underlying graph structure
given by the precision matrix of the Gaussian data with the doubly truncated data. Our
procedure includes two steps: the first one consists in estimating the covariance matrix
terms to terms by maximising the corresponding bivariate marginal log-likelihood of the
truncated vector. The second one relies on the graphical lasso procedure to obtain a lasso
estimation of the precision matrix. We then proved some theoretical convergence guar-
antees with regard to graph estimation. The first result states rate convergence about
the covariance matrix estimator. The second one provides sparsistency of the precision
matrix estimator with respect to graph structure recovery.
Practically, simulations studies also corroborate efficiency of our procedure. They also
show that our procedure is more appropriate than using graphical lasso directly on trun-
cated data (without a preliminary estimation of the covariance matrix).
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However, results depend on graph structure and simulations exhibit well that some graph
structures are more favorable to graph recovery.

This work only deals with a double truncation. Yet, our procedure seems to be prac-
tically efficient with a single truncation (right or left) but proof of our theoretical results
requires the both right and left points of truncation and they do not hold in the unilateral
setting. It would be interessant to address this case later, perhaps using different tools.

Appendix A: Proof of Lemma 3.1

Proof. (Lemma 3.1) It is sufficient to show the existence of such a constant γjk > 0 for
j < k fixed. Let j < k, σ ∈ [−1 + δ, 1 − δ] and (yj , yk) ∈ [aj , bj ] × [ak, bk]. The proof
naturally falls into four parts:
• a = b = 1:

φ11,jk(σ, yj , yk) =
1

2π
√

1− σ2
exp

[
−
y2
j − 2σyjyk + y2

k

2(1− σ2)

]
. (A.1)

Since (yj , yk) ∈ [aj , bj ] × [ak, bk] and δ2 ≤ 1 − σ2 ≤ 1, φ11,jk is continuous and strictly
positive on a compact of R3.

• a = 0, b = 1: An easy computation yields that

φ01,jk(σ, yk) =
1√
2π

exp

(
− y2

k

2

)[
1− F

(bj − σyk√
1− σ2

)
+ F

(aj − σyk√
1− σ2

)]
, (A.2)

where F denotes the c.d.f. of N (0, 1). Since yk ∈ [ak, bk], −∞ < ak < bk < ∞ and
δ2 ≤ 1− σ2 ≤ 1, φ01,jk is hence continuous and strictly positive on a compact of R2.

• a = 1, b = 0: Analogous to a = 0, b = 1.

• a = b = 0:

φ00,jk(σ) =

∫
[ak,bk]c

1√
2π

exp

(
− y2

2

)[
1− F

( bj − σy√
1− σ2

)
+ F

( aj − σy√
1− σ2

)]
dy.

Since δ2 ≤ 1 − σ2 ≤ 1, φ00,jk is hence continuous and strictly positive on a compact of
R.

Appendix B: Proof of Lemma 3.2

Proof. (Lemma 3.2) In the same manner as for the proof of Lemma 3.1, it is sufficient
to show the result for j < k fixed. Fix j < k and show that for all a, b ∈ {0, 1}, the
function φab,jk is C3 on the compact [−1 + δ, 1 − δ] × [aj , bj ] × [ak, bk] (it is even C∞).
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Hence, for all m ∈ {1, 2, 3}, ∂mσ φab,jk is continuous on a compact of R3, which establishes
the result. We naturally distinguish the four cases (see (A.2) for expressions of φab,jk):
• a = b = 1: φ11,jk is C3 on ]− 1, 1[×R2 hence on [−1 + δ, 1− δ]× [aj , bj ]× [ak, bk].

• a = 0, b = 1: Since F is C∞ hence C3 on R, φ01,jk is C3 on [−1 + δ, 1− δ]× [ak, bk].

• a = 1, b = 0: Analogous to a = 0, b = 1.

• a = b = 0 : Let m ∈ {1, 2, 3}. We apply Lebesgue theorem for continuity and
differentiability of integrals with parameters:

• σ 7→ φ01,jk(σ, y) is C3 on [−1 + δ, 1− δ].
• Straigthforward calculations of derivatives of φ01,jk(σ, y) w.r.t. σ show that,

for σ ∈ [−1 + δ, 1− δ]:∣∣∣∂mσ φ01,jk(σ, y)
∣∣∣ ≤ C(aj , bj , ak, bk, δ,m) exp

(
− y2

2

)
,

where C(aj , bj , ak, bk, δ,m) is a positive constant depending on aj , bj , ak, bk, δ

and m and y 7→ C(aj , bj , ak, bk, δ,m) exp

(
− y2

2

)
is integrable on [ak, bk]c.

It follows that φ00,jk is C3 on [−1 + δ, 1− δ].

Appendix C: Proof of Lemma 3.3

Proof. (Lemma 3.3)

1. Let l ∈ N∗. First, for all σ ∈ [−1 + δ, 1− δ], we have:∫
R2

Ljk(σ, y)dµ(y) =

∫∫
R2

f(x, y, σ)dxdy = 1. (C.1)

It remains to prove that:

∂lσ

(∫
R2

Ljk(σ, y)dµ(y)

)
= ∂lσφ00,jk(σ) +

∫ bk

ak

∂lσφ01,jk(σ, y)dy +

∫ bj

aj

∂lσφ10,jk(σ, x)dx

(C.2)

+

∫∫
[aj ,bj ]×[ak,bk]

∂lσφ11,jk(σ, x, y)dxdy.

Let us deal with each of these terms:

• For a = 0, b = 0: it is obvious.
For the following terms, we use Lebesgue theorem for differentiability of integrals with
parameters.
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• For a = 0, b = 1 (and a = 1, b = 0): According to (A.2), it is clear that φ01,jk is C∞

on the compact [1− δ, 1 + δ]× [ak, bk], which establishes the formula.

• For a = 1, b = 1: Analogously, (A.1) shows that φ11,jk is C∞ on the compact
[1− δ, 1 + δ]× [aj , bj ]× [ak, bk].

2. Let l ∈ N∗. Let us first clarify some notations:

EΣ∗
jk

(
logLjk(σ, Y )

)
= EΣ∗

jk

(
`(σ, Y )

)
= R(σ)

=

∫
R2

logLjk(σ, y)Ljk(Σ∗jk, y)dµ(y)

= φ00,jk(Σ∗jk) log φ00,jk(σ) +

∫ bk

ak

φ01,jk(Σ∗jk, y) log φ01,jk(σ, y)dy

+

∫ bj

aj

φ10,jk(Σ∗jk, x) log φ10,jk(σ, x)dx

+

∫∫
[aj ,bj ]×[ak,bk]

φ11,jk(Σ∗jk, x, y) log φ11,jk(σ, x, y)dxdy.

On the other hand,

EΣ∗
jk

(
∂lσ logLjk(σ, Y )

)
=

∫
R2

∂lσ

(
logLjk(σ, y)

)
Ljk(Σ∗jk, y)dµ(y)

= φ00,jk(Σ∗jk)∂lσ log φ00,jk(σ)

+

∫ bk

ak

φ01,jk(Σ∗jk, y)∂lσ log φ01,jk(σ, y)dy

+

∫ bj

aj

φ10,jk(Σ∗jk, x)∂lσ log φ10,jk(σ, x)dx

+

∫∫
[aj ,bj ]×[ak,bk]

φ11,jk(Σ∗jk, x, y)∂lσ log φ11,jk(σ, x, y)dxdy.

To show the equality ∂lσEΣ∗
jk

(
logLjk(σ, Y )

)
= EΣ∗

jk

(
∂lσ logLjk(σ, Y )

)
, we show the

equality for each of the four terms

• For a = 0, b = 0: it is obvious.
For the three remaining terms, we use Lebesgue theorem for differentiability of inte-
grals with parameters.

• For a = 0, b = 1 (and a = 1, b = 0):

log φ01,jk(σ, y) = −y
2

2
− log

√
2π + log

[
1− F

( bj − σy√
1− σ2

)
+ F

( aj − σy√
1− σ2

)]
.

The function log φ01,jk is C∞ on the compact [−1 + δ, 1 − δ] × [ak, bk]. Therefore,

for all σ ∈ [−1 + δ, 1 − δ] and y ∈ [ak, bk],
∣∣∣∂lσ log φ01,jk(σ, y)

∣∣∣ is upper bounded by
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a constant which is integrable on the compact [ak, bk] (with regard to the density
y 7→ φ01,jk(Σ∗jk, y)).

• For a = 1, b = 1:

log φ11,jk(σ, x, y) = − log(2π)− 1

2
log(1− σ2)− x2 − 2σxy + y2

2(1− σ2)
.

Analogously, the function log φ11,jk is C∞ on the compact [−1 + δ, 1− δ]× [aj , bj ]×
[ak, bk]. Thus, for all σ ∈ [−1+δ, 1−δ], x ∈ [aj , bj ] and y ∈ [ak, bk],

∣∣∣∂lσ log φ11,jk(σ, x, y)
∣∣∣

is upper bounded by a constant which is integrable on the compact [aj , bj ] × [ak, bk]
(with regard to the density (x, y) 7→ φ11,jk(Σ∗jk, x, y)).
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