The Laplace transform of the integrated Volterra Wishart process - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

The Laplace transform of the integrated Volterra Wishart process

Résumé

We establish an explicit expression for the conditional Laplace transform of the integrated Volterra Wishart process in terms of a certain resolvent of the covariance function. The core ingredient is the derivation of the conditional Laplace transform of general Gaussian processes in terms of Fredholm's determinant and resolvent. Furthermore , we link the characteristic exponents to a system of non-standard infinite dimensional matrix Riccati equations. This leads to a second representation of the Laplace transform for a special case of convolution kernel. In practice, we show that both representations can be approximated by either closed form solutions of conventional Wishart distributions or finite dimensional matrix Riccati equations stemming from conventional linear-quadratic models. This allows fast pricing in a variety of highly flexible models, ranging from bond pricing in quadratic short rate models with rich autocorrelation structures, long range dependence and possible default risk, to pricing basket options with covariance risk in multivariate rough volatility models.
Fichier principal
Vignette du fichier
Rough Wishart 200513.pdf (570.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02367200 , version 1 (17-11-2019)
hal-02367200 , version 2 (17-06-2020)
hal-02367200 , version 3 (18-07-2021)
hal-02367200 , version 4 (04-07-2024)

Identifiants

Citer

Eduardo Abi Jaber. The Laplace transform of the integrated Volterra Wishart process. 2020. ⟨hal-02367200v2⟩
368 Consultations
558 Téléchargements

Altmetric

Partager

More