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Abstract

We establish an explicit expression for the conditional Laplace transform of the
integrated Volterra Wishart process in terms of a certain resolvent of the covariance
function. The core ingredient is the derivation of the conditional Laplace transform
of general Gaussian processes in terms of Fredholm’s determinant and resolvent. Fur-
thermore, we link the characteristic exponents to a system of non-standard infinite
dimensional matrix Riccati equations. This leads to a second representation of the
Laplace transform for a special case of convolution kernel. In practice, we show that
both representations can be approximated by either closed form solutions of conven-
tional Wishart distributions or finite dimensional matrix Riccati equations stemming
from conventional linear-quadratic models. This allows fast pricing in a variety of
highly flexible models, ranging from bond pricing in quadratic short rate models with
rich autocorrelation structures, long range dependence and possible default risk, to
pricing basket options with covariance risk in multivariate rough volatility models.
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1 Introduction

We are interested in the d x d Volterra Wishart process X X | where X is the d x m-matrix
valued Volterra Gaussian process

t
Xy = go(t) + / K(t,s)dWs,
0

for some given input curve go : [0,7] — R¥™, suitable kernel K : [0,7]> — R**? and
d X m-matrix Brownian motion W, for a fixed time horizon 7" > 0.

The introduction of the kernel K allows for flexibility in financial modeling as illustrated
in the two following examples. First, one can consider asymmetric (possibly negative)
quadratic short rates of the form

re = tr (XtTQXt) +£(t)

where Q € S, ¢ is an input curve used for matching market term structures and tr stands
for the trace operator. The kernel K allows for richer autocorrelation structures than the
one generated with the conventional Hull and White (1990) and Cox, Ingersoll, and Ross
(2005) models. Second, for d = m, one can build stochastic covariance models for d-assets
S = (S',...,5% by considering the following dynamics for the stock prices:

dSt = dlag(St)XtdBt

where B is d-dimensional and correlated with W. Then, the instantaneous covariance
between the assets is stochastic and given by % = XX, € Si. When d = m =1,
one recovers the Volterra version of the Stein and Stein (1991) or Schébel and Zhu (1999)
model. Here, singular kernels K satisfying limg |K (¢, s)| = oo, allow to take into account
roughness of the sample paths of the volatility, as documented in Bennedsen et al. (2016);
Gatheral et al. (2018). As an illustrative example for d = m = 1, one could consider the

Riemann-Liouville fractional Brownian motion

1 t
/ (t — s)T=12aw,
0

X = T(H+1/2)

either with H € (0,1/2) to reproduce roughness when modeling the variance process, or
with H € (1/2,1) to account for long memory in short rate models.

In both cases, integrated quantities of the form fo X, X/ ds play a key role for pricing
zero-coupon bonds and options on covariance risk. In order to keep the model tractable,
one needs to come up with fast pricing and calibration techniques. The main objective
of the paper is to show that these models remain highly tractable, despite the inherent
non-markovianity and non-semimartingality due to the introduction of the kernel K. For



w € S, our main result (Theorem 3.3) provides the explicit expression for the conditional
Laplace transform:

E [exp (- /t T (wXSXST ) ds) ‘ .7-}} — exp <¢t7T + /( il (gt(s)T\I/LT(ds,du)gt(u))> :

where (¢, V) are defined by

Ot =—m |t (Wer(ds, dw)K(w,)K(s, D)), érr =0,
(t.T]?

Uy r(ds, du) = —wdge—yy(ds, du) — VwR (s, u)vwdsdu,

with g:(s) = E[X,|F;] the forward process, Cy(s,u) = E[(Xs — g¢(5))(Xy — g¢(u)) T |F]
the conditional covariance function, and R’y : [0,T ]2 — R4 the Fredholm resolvent of
(—2y/wCy/w) on [0,T] given by

T
Rir(s,u) = —Q@Ct(s,u)\/a—/ 2vwCy(s, z2)VwRp(z,u)dz, t<su<T.
¢

Using the integral operator C; induced by the covariance kernel Cy, i.e. (Cif)(s) =
fOT Cy(s,u)f(u)du for f € L*([0,T],R¥™), the Laplace transform can be re-expressed in
explicit form

oo (- [ e(ora)o) ]

where (f,g) 2 = ftT tr (f(s)"g(s)) ds and det stands for the Fredholm determinant.

The Laplace transform is exponentially quadratic in the forward process (g¢)i<7, and
cannot in general be recovered from that of finite dimensional affine Volterra processes
introduced in Abi Jaber et al. (2019a), see Remark 2.1. We also mention that the mod-
els studied here are quadratic constructions of Gaussian processes and do not pose any
difficulty regarding existence and uniqueness, in contrast for instance with conventional
Wishart processes that go beyond squares of Gaussians, see Bru (1991).

Furthermore, we link ¥ to a system of non-standard infinite dimensional backward
Riccati equations in the general case of non-convolution kernels. This allows us to deduce
a second representation of the Laplace transform for a special case of convolution kernels
in the form

K(t,s) =k(t —s)ls<; suchthat k(t) = / e "u(dz), t>0,
Ry



for some suitable signed measure p, showing, similarly to Cuchiero and Teichmann (2019);
Harms and Stefanovits (2019), that the Volterra Wishart process can be seen as a super-
position of possibly infinitely many conventional linear-quadratic models written on the
infinite dimensional process

t
Yi(z) :/ e AW, >0, zeR,.
0

In particular, this second representation not only allows us to recover the expressions for the
Laplace transform derived in the aforementioned articles but, most importantly, provides
an explicit solution for the corresponding infinite dimensional Riccati equations.

Although explicit, the expression for the Laplace transform is not known in closed form,
except for certain cases. We provide two approximation procedures either by closed form
solutions of conventional Wishart distributions (Section 2.3) or finite dimensional matrix
Riccati equations stemming from conventional linear-quadratic models (Section 3.3). These
approximations can then be used to price bonds with possible default risk, or options
on covariance in multivariate (rough) volatility models by Laplace transform techniques
(Section 4).

Literature Conventional Wishart processes initiated by Bru (1991) and introduced
in finance by Gourieroux and Sufana (2003) have been intensively applied, together with
their variants, in term structure and stochastic covariance modeling, see for instance Alfonsi
(2015); Buraschi et al. (2010); Cuchiero et al. (2011, 2016); Da Fonseca et al. (2007, 2008);
Gouriéroux et al. (2009); Muhle-Karbe et al. (2012). Conventional linear quadratic models
have been characterized in Chen et al. (2004); Cheng and Scaillet (2007). Volterra Wishart
processes have been recently studied in Cuchiero and Teichmann (2019); Yue and Huang
(2018). Applications of certain quadratic Gaussian processes can be found in Benth and
Rohde (2018); Corcuera et al. (2013); Harms and Stefanovits (2019); Kleptsyna et al.
(2002). Gaussian stochastic volatility models have been treated in Gulisashvili (2018);
Gulisashvili et al. (2019).

Outline In Section 2 we derive the Laplace transform of general quadratic Gaussian
processes in RV, we provide a first approximation procedure by closed form expressions
and link the characteristic exponent to non-standard Riccati equations. These results are
then used in Section 3 to deduce the Laplace transforms of Volterra Wishart processes.
We also provide a second representation formula for the Laplace transform together with
an approximation scheme for a special class of convolution kernels. Section 4 presents
applications to pricing: (i) bonds in quadratic Volterra short rate models with possible
default risk; (ii) options on volatility for basket products in Volterra Wishart (rough)
covariance models. Some technical results are collected in the appendices.

Notations For T > 0, we define L?([0,7]2,RV*") to be the space of measurable



functions F : [0,7]? — RV*N such that

T T
/ / |F(t, s)|?dtds < oc.
0o Jo

For any F,G € L?([0,T]?, RN*") we define the x-product by
T
(FxG)(s,u) = / F(s,2)G(z,u)du, s,u<T, (1.1)
0

which is well-defined in L2([0, T]2, RN*") due to the Cauchy-Schwarz inequality. We de-
note by F* the adjoint kernel of F' in L%([0, 7], RV*N), that is

F*(s,u) = F(u,s)", s,u<T.

For any kernel F' € L%([0, T)?, RVN>*"), we denote by F the integral operator from L?([0, T], RY)
into itself induced by the kernel F' that is

T
(Fg)(s) = / F(s,u)g(u)du, g L*(0,T],RN).

If F and G are two integral operators induced by the kernels F and G in L?([0, T]2, RV*N),
then FG is an integral operator induced by the kernel F' x G.

Sf stands for the cone of symmetric non-negative semidefinite N x N-matrices, tr
denotes the trace of a matrix and Iy is the N x N identity matrix. The vectorization
operator is denoted by vec and the Kronecker product by ®, we refer to Appendix B for
more details.

2 Quadratic Gaussian processes

Throughout this section, we fix 7> 0, N > 1 and let Z denote a R¥-valued square-
integrable Gaussian process on a filtered probability space (2, F, (F¢)i<r,P) with mean
function go(s) = E[Z;] and covariance kernel given by Cy(s,u) = E[(Zs — go(s))(Zy —
go(u))T], for each s,u € [0,T]. We note that go and Cy may depend on T, but we do not
make this dependence explicit to ease notations.

2.1 Fredholm’s representation and first properties

Assume that Cpy is continuous in both variables. Then, there exists a kernel Kp €
L%([0, T)?,RN*N) and a N-dimensional Brownian motion W such that

T
7 = golt) + /0 Kr(t, s)dW,, (2.1)



for all t < T, see Sottinen and Viitasaari (2016, Theorem 12 and Example 2). In particular,
Co = K7 x K7, that is

T
Co(s,u) —/ Kr(s,2)Kr(u,2) " dz, s,u<T.
0

For any t < s, Zs admits the following decomposition

Zs = go(s) + /Ot Krp(s,u)dW, + /tT Kr(s,u)dW,, (2.2)
showing that conditional on F;, Zs is again a Gaussian process with conditional mean
a(s) = E[Z4| )] = go(s) + /Ot Ko(s,u)dW,, t<s<T,
and conditional covariance function
Cels,u) = E[(Zs — g¢())(Zu — ge(w)) T | F]
= /tT Krp(s, 2)Kp(u,2) " dz, t<s,u<T. (2.3)

Again we drop the possible dependence of g; and C; on T', and we note in particular that
for each s,u < T, t — Cy(s,u) is absolutely continuous on [0, s A u] with density

Ct(S,U) = —K(S,t)K(’U,, t)Ta (24)
and that the process t — ¢;(s) is a semimartingale on [0, s) with dynamics
dgi(s) = Kp(s,t)dWy, t<s.

We are chiefly interested in the Sf -valued process ZZ . The following remark shows
that, in general, ZZ " cannot be recast as an affine Volterra process as studied in Abi Jaber
et al. (2019a).

Remark 2.1. To fiz ideas, we set go = Zo € RN. An application of Ité’s formula yields
¢
5(6)e9)" = 2025 + [ (s, u)Kr(s, ) d
0

¢ t
b [ KalsaWug(s) + [l aW Ke(s.w)T, <
0 0
Taking the limit s — t leads to the dynamics

t
7 :ZOZ(—)r‘f‘/ Kr(t,u)Kp(t,u) " du
0

n /0 Kot u)dWagu(t) T + /O Gu(D)AW,] K (t,0)T. (2.5)



This shows, that in general, because of the presence of the infinite dimensional process
t — g; in the dynamics, ZZ" does not satisfy a stochastic Volterra equation in the form

t t t
YthoJr/ K(t,s)b(ys)ds+/ o (V) AW K (2, s)T+/ K(t, s)dW,o(Y,)T,
0 0 0

where b,o : RNV +— RN*N - For this reason, ZZ' falls beyond the scope of the processes
studied in Abi Jaber et al. (2019a). Except for very specific cases, for instance, when
Ky = Iy, we have gy(s) = Z,, for all u < s, and (2.5) reduces to the well-known dynamics
of Wishart processes as introduced by Bru (1991).

Whence, the conditional Laplace transform of ZZ T cannot be deduced from Abi Jaber
et al. (2019a, Theorem 4.3). Nonetheless, it can be directly computed from Wishart dis-
tributions that we recall in Appendix A.

Theorem 2.2. Fizt < s <T. Conditional on F;, ZSZS—r follows a Wishart distribution
2,21~z WISy (1/2,0(5)au(s) ", 2Ci(s, 9))
Further, for any u € Sf, the conditional Laplace transform reads

exp <—gt(s)Tu (In + 2C(s, s)u)_1 gt(s)>
det (I + 2Cy(s, s)u)'/?

Eexp (-2 uz,) ( 7| =

Proof. Fix t < s < T, conditional on F;, it follows from (2.2) that Z, is a Gaussian vector
in RY with mean vector g;(s) € RY and covariance matrix Cy(s, s) € RV*V. The claimed
result now follows from Proposition A.1. O

In particular, if N = 1, t = 0 and s = T, one obtains the well-known chi-square
distribution

—ugo(T)?
exp (1+2ugC()’(§(72,T)>

E [exp (—uZ})] = (1 + 2uCo(T. 7)) 2

The computation of the Laplace transform for the integrated squared process is more
involved and is treated in the next subsection.

2.2 Conditional Laplace transform of the integrated quadratic process

We are interested in computing the conditional Laplace transform

T
E [exp <—/ ijzsds> ‘ }'t] . weSY, t<T. (2.6)
t



For ¢ = 0 and for centered processes, such computations appeared several times in the
literature showing that the quantity of interest can be decomposed as an infinite product
of independent chi-square distributions, see for instance Anderson and Darling (1952);
Cameron and Donsker (1959); Varberg (1966). The same methodology can be readily
adapted to our dynamical case and makes use of the celebrated Kac—Siegert/Karhunen—
Loeve representation of the process Y = y/wZ whose conditional covariance function is
C = \JwCiy/w, see Kac and Siegert (1947); Karhunen (1946); Loeve (1955). For this, we
fix t < T, we consider the inner product on L?([t, T],R") given by

T
(hadz = [ F6)a()is fig e P(LTLRY)
and we assume that C; is continuous in both variables'. By definition, the covariance
kernel C}” is symmetric and nonnegative in the sense that
C¥(s,u) = C¥(u,s)", s,t<T,
and

T T
/t/tf(s)Tc;"(s,u)f(u)dudszo, fe L([t, T],RM).

An application of Mercer’s theorem, see Shorack and Wellner (2009, Theorem 1 p.208),
yields the existence of a countable orthonormal basis (€}'7)n>1 in L2([t,T],RN) and a
sequence of nonnegative real numbers (A7 )n>1 With >, <1 Aj'p < oo such that

C' (s, u) Z)‘nTe?T Jepp(u)', t<su<T, (2.7)
n>1
and
T
/ Cy(s,w)efp(u)du = Nipelp(s), t<s<T, n>1, (2.8)
t

where the dependence of (e?’T, /\ZT) on w is dropped to ease notations. This means that
(AY7, €l p)n>1 are the eigenvalues and the eigenvectors of the integral operator /wCiy/w
from L2([t,T],RY) into itself induced by C:

(VwCi/wf)(s /ct s,u)f(uydu, t<s<T, feL*[tT],RY).

As a consequence of Mercer’s theorem, conditional on F;, the process Y admits the Kac—
Siegert representation

Yo = vVwgi(s) + Y \/Arp&elp(s), t<s<T, (2.9)

n>1

!This is equivalent to assuming that the centered Gaussian process (Z.—[E[Z.]) is mean-square continuous.



where, conditional on F, (&,)n>1 is a sequence of independent standard Gaussian random
variables, see Shorack and Wellner (2009, Theorem 2 p.210 and the comment below (14) on
p.212). We now introduce the quantities needed for the computation of (2.6) in Theorem 2.3
below. We denote by id the identity operator on L?([t,T],RY), i.e. (idf)(s) = f(s), by
(id + 2y/wCyy/w)~! the integral operator generated by the kernel

1 T
7n€n,T(3)€rfT(U) ) (2.10)
n; 14+2M0, " t

and we set

det(id + 2v/wCyv/w) == [ [ (1 +2X77) . (2.11)

n>1

The last expression is well defined due to the convergence of the series (31" | A\p)m>1 and
the inequality

m m m
1—1—22/\2 H L+ 2\ <exp<22)\ZT>, m > 1.
n=1 n=1 n=1

Theorem 2.3. Fiz w € SY and t < T. Assume that the function (s,u) — Ci(s,u) is
continuous. Then,

v exp g,/ (id + 2y/wCr/w) ~'V/i5g) 1)
E [exp <—/ Z! wZSds> ’J—}] - - . (2.12)
¢ det (id + 2/wCy/w)"
Proof. Fix t <T. Parseval’s identity gives (vwge, Vwge)rz = 3,51 (Vwgt, el )3, so that
= ’ t

T 2
| ZTwzas = vy = 3 (et + Wiz

t n>1

where the first equality follows from the definition Y := \/wZ and the second equality is
a consequence of (2.9). By the independence of the sequence (£"),>1 and the dominated
convergence theorem we can compute

E [exp <_ /t ’ ZsTwZSds> ‘ ft] - I[E [exp (— ( A€ <ﬁgt,eZT>L?>2> ‘ ft}

n>1
= exp <\/>gta et T> )
,g,/1+2A” ( 1+2A
= det(id + 2v/wCyv/w) /2
X exp _Zl+2)\ (fgbetT) 2 )

n>1



where the second equality is obtained from the chi-square distribution, since the random
variable ()\?,Tﬁn + (Vwgy, 62T>L$> is Gaussian with mean (y/wge, e}'r) 2 and variance Aj'r,

for each n > 1, see Proposition A.1. The claimed expression now follows upon observing
that, thanks to (2.10),

(g, Vw (id + 2\/5(315\/5)_1 Vwg) 2 = Z 1 2)\ <\th,€t:r>

n>1

O

Remark 2.4. The determinant (2.11) is named after Fredholm (1903) who defined it for
the first time through the following expansion

det(id+ C) = Zn'/ / det [(C(si,55))1<i j<n) ds1 ... dsp,
n>0

where C is a generic integral operator with continuous kernel C'. Lidskii’s theorem ensures
that Fredholm’s definition is equivalent to

det(id + C) = exp (Tr (log (id + C))),

where Tr(C ft tr(C(s, s))ds, and consequently equivalent to the infinite product expres-
sion as in (2 11), refer to Szmon (1977) for more details.

Closed form solutions are known in some standard cases.

Example 2.5. Set N=1,t=0,T =1 and Z = W, where W is a standard Brownian
motion and Zy € R. Then, go(s) = 0 and Cy(s,u) = s A u and the eigenvalues and
eigenvectors of the eigenproblem (2.8) are well-known and given by

n w n . 1
)\0,1 g m a,nd 6071(8) == \/§S1n <<n —_ 2) 7TS> y n Z ].
Using the identity

H (1 + 2)\871) = H (1 + m_i%) = cosh V2w,

(2.12) reads

E [exp <—w/01 Wfdsﬂ - (coshf) 2 (2.13)

For arbitrary kernels C, the eigenpairs (A", e"),>1 are, in general, not known in closed
form. This is the case for instance for the fractional Brownian motion. We provide in the
next subsection an approximation by closed form formulas.

10



2.3 Approximation by closed form expressions

A natural idea to approximate (2.12) is to discretize the time-integral. Fix ¢ < T and let
s =t+i(T —1t)/n,i=0,...,n. By the dominated convergence theorem it follows that

T T — n
E [exp </ Z;—wZSd,s) ‘ ft] = lim E texp fZZ;;wZS?ds ‘ Fil,
: n—00 n = i

for all w € SY. For each n, (Zsp, .-, Zgn )" being Gaussian, the right hand side is known in
closed form. This is the object of the next proposition which will make use of the Kronecker
product ® and the vectorization operator vec, we refer to Appendix B for more details.

Proposition 2.6. Fiz w € Sf and t <T.

T - exp (ngwn (Inn + QCZ‘wn)_l gf)
E [exp (- / Z! szds> ’ }'t] = lim . . (2.14)
t n—00 det (Iny + 2Cwy,)

where wy, = % (I, @ w) € RPVXN - gn s the nN -vector

9¢(s7)
g=1 1, (2.15)

n

gt(sn)

and C}' is the nN x nN-matrix with entries
(CP1 = Cy(sy, s, p=(i—1)N+j, ¢=(k—1)N+1, (2.16)
foralli,k=1,...,n, and 5,1 =1,...,N.

Proof. We simply observe that
n
Y ZpwZe =2 (I, @ w) 2",
i=1

where Z" = vec(Z") and Z" = (Zg, ..., Zs). Z"™ being a Gaussian vector in R™Y with
mean vector (2.15) and covariance matrix (2.16), the claimed result readily follows from
Proposition A.1 combined with the dominated convergence theorem. O

We now illustrate the approximation procedure in practice for N = 1. Consider a one
dimensional fractional Brownian motion W with Hurst index H € (0,1) and set

I(H)=E [exp (— /01 (Wf)stﬂ . (2.17)

11



The (unconditional) covariance function of the fractional Brownian motion is given by

1
CH(s,u) = 3 (185 + Jul — |s — u?H). (2.18)
Fix n > 1 and a uniform partition (s7?)o<i<n of [0,1]. Since W is centered, (2.15) reads
g4 = 0 and the right hand side in (2.14) reduces to
5 _1
2
I"(H) = det <In + Cé{’") , (2.19)
n
where C’é{’n(i,j) = Cé{(s?, s?), 1,7 =1,...,n. We proceed as follows. First, we determine

the reference value of (2.17) for several values of H. For H = 1/2, the exact value is
I(1/2) = cosh(v/2)~1/2, recall (2.13). For H € {0.1,0.3,0.7,0.9}, we run 500 Monte-Carlo
simulations to get I(H) with confidence intervals. Each Monte-Carlo simulation consists
in 10* sample paths with 103 time steps each. Second, for each value of H, we compute
I,(H) as in (2.19), for several values of n. The results are collected in Table 1 and Figure 1
below. We observe that for n = 50, I"(H) falls already within the 90% confidence interval
of the Monte—Carlo simulation, for any value of H. Other quadrature rules can be used in
Proposition 2.6, see for instance Bornemann (2010).

H 0.1 0.3 0.5 0.7 0.9
ref. I(H) 0.50038 0.60748 0.67757* 0.72506 0.76012

n\I"(H)
10 050310 0.59301 0.65763 0.70376 0.73779
20 0.50081 0.59961 0.66727 0.71445 0.74810
30 0.50027 0.60291 0.67160 0.71912 0.75386
90 0.50019 0.60433 0.67337 0.72101 0.75581
100 0.50025 0.60608 0.67545 0.72321 0.75801
200 0.50037 0.60701 0.67650 0.72431 0.75924
500 0.50051 0.60757 0.67714 0.72498 0.75992
1000 0.50058 0.60776 0.67735 0.72520 0.76015

Table 1: Approximation of I(H) by I"™(H) for several values of H with n ranging between
10 and 1000. *exact value for 1(1/2).

12
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Figure 1: Convergence of I"(H) (blue) towards the benchmark MC value I(H) (red) for
different values of (H, n) from Table 1. The dashed lines delimit the 90% confidence interval
of the Monte-Carlo simulation.

2.4 Connection to Riccati equations

The expression (2.12) is reminiscent of the formula obtained for finite dimensional Wishart
processes in Bru (1991) and more generally that of linear quadratic diffusions, see Cheng
and Scaillet (2007), suggesting a connection with infinite dimensional Riccati equations.
Indeed, setting

1
ot = —5 Tr (log (id + 2v/wCiv/w)) ,
7 = —vw (id + 2ywCiv/w) ' Va,
it follows from Remark 2.4 that (2.12) can be rewritten as
T
E [exp <—/ Z;ersds> ) .7-}} = exp (¢t7T + <gt,\Ilt7Tgt)L%) , t<T. (2.20)
t

Since t — Ci(s,u) is absolutely continuous with density Cy(s,u) given by (2.4), one would
expect t — C; to be strongly differentiable’ with derivative C; given by the integral
operator

) 2We recall that ¢t — C; is strongly differentiable at time ¢ > 0, if there exists a bounded linear operator
C: from L? ([0, T],R") into itself such that

1 . e
lim L Crin — Cr— hCillop = 0, where |[Gllop =  sup  1CGTz2.
h=0 h feL2([0,T],RNV) Hf”L2

13



T
(th)(s):/t Culs, ) fwydu, e L2([0,T],RY), s<T. (2.21)

By taking the derivatives we get that (¢, ¥) solves the following system of operator Riccati
equations

¢rr=Tr (‘I’t,TCt) ) érr =0, (2.22)
‘i’t,T = Q‘I’LT\/ECt\/E‘I’t,T, W = —wid, (2.23)

where F, denotes the derivative of F, with respect to t.
This induces a system of Riccati equations for the kernels. To see this, we introduce
the concept of resolvent. Fix ¢ < T and define the kernel

1
RZ‘:[,)T(S7 U) = Z <]_—|—2)\n — 1) 62T(8)62T(U)T, t < S, U < T. (224)
n>1 t, T

It is straightforward to check, using (2.7), that for all t < s,u < T,
T T
2/ Ri’r(s,2)Cy (2,u)dz :2/ Cy' (s, 2) Rip (2, u)dz = —Ry’p (s, u) — 2C}° (s, u).(2.25)
t t

R}’ is called the resolvent kernel of (—2C}") and the integral operator R{’r induced by
R}’ satisfies the relation

v = (id 4+ 2v/wCiv/w) ' —id, (2.26)
so that W, r can be re-expressed in terms of the resolvent
O, 7 = —wid — VoRY .

The next theorem, whose proof is postponed to Appendix C, establishes the representation
of the Laplace transform together with the Riccati equations (2.22)-(2.23) in terms of the
induced kernel

U, r(ds, du) = —ws—y(ds, du) + (s, u)dsdu, (2.27)

where ;7 = —ﬂRZ’T w is the density of ¥, r with respect to the Lebesgue measure.
We recall the x-product defined in (1.1).

Theorem 2.7. Fiz w € SY and T > 0. Assume that the function (s,u) — Cy(s,u) is
continuous, for each t < T, such that

sup sup |Ci(s,u)| < oo. (2.28)
t<T t<s,u<T
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Assume that t — Cy is strongly differentiable on [0,T] with derivative (2.21). Then,

T
E [exp <—/ ZSTszds> ) ft} = exp (Qf)t,T +/ gt(s)T\Ilt,T(ds,du)gt(u)> , t<T,
t (trT]2

where t — Wy is given by (2.27) and ¢ by
bor = — / tr (q/t,T(ds,du)KT(u,t)KT(s, t)T> . orr =0.
(t1)?

In particular, t — ¥, 7 solves the Riccati equation with moving boundary
¢t7T =2, 7 * Cy * U, 1 on (t, T]2 a.e., (2.29)
Yer(t,:) = QZJtT(-,t)T =0 on [t,T] a.e.

We note that, since ¢ (s, u) = 0 whenever s A u < t, equation (2.29) is the compact
form of

&t?T(s,u) = —2wKT(s,t)KT(u,t)Tw

T
2wk (s, 1) / Kr(zt) o (2 u)dz
t
T
—2/ Ve (s, 2) Kp(z, t)dzKr(u, t) Tw
t

T T
- 2/ Pe7(s, z)KT(z,t)dz/ Kr(2',t) (2 u)d?, t<s,u<T ae.
t t

and the expanded form of ¢ is given by

d.)t,T = /tT tr <wKT(s, t)KT(s,t)T) ds — /tT /tT tr (1/}t7T(s,u)KT(u, t)KT(s,t)T) dsdu.

Remark 2.8. The Riccati equation (2.29) can be compared to the Bellman (1957) and
Krein (1955) variation formula for Fredholm’s resolvent, see also Golberg (1973); Schu-
mitzky (1968).

3 The Volterra Wishart process and its Laplace transforms

Fix T > 0 and a filtered probability space (2, F, (Ft)i<T,P) supporting a d x m-matrix
valued Brownian motion W. In this section, we consider the special case of the matrix-
valued Volterra Gaussian process

X, = golt) + /0 CK(t, $)dW, (3.1)
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where go : [0, T] — R?™ is continuous and K : [0,T] — R%*? is a d x d-measurable kernel
of Volterra type, that is K(t,s) = 0 for s > ¢t. Compared to (2.1), since the kernel K is of
Volterra type, the integration in (3.1) goes up to time ¢ rather than 7.

Under the assumption

T T
Sup/ |K(t,s)|*ds < co and lim |K(u+h,s) — K(u,s)?ds =0, u<T,(3.2)
t<T Jo h=0Jo

the stochastic convolution .
N; = / K(t,s)dWs,
0

is well defined as an It integral, for each ¢ € [0, T]. Furthermore, 1t6’s isometry leads to
t T
EUM—Auﬂ<2/yK@mFm+2/ K (t,u) — K (s, u)[2du (3.3)
s 0

which goes to 0 as s — t showing that N is mean-square continuous, and by virtue of
Peszat and Zabczyk (2007, Proposition 3.21), the process N admits a predictable version.
Furthermore, by the Burkholder-Davis-Gundy inequality applied on the local martingale
(JT K¢, S)dWS)re[o,t)’ it holds that

p/2

t p T
supE [ / K(t,s)dWs ] <ecpr (sup/ |K(t,s)\2ds> <oo, p>2, (34)
0 0

t<T

t<T

where ¢, 7 is a positive constant only depending on 7" and p. Kernels satisfying (3.2) are
known as Volterra kernels of continuous and bounded type in L? in the terminology of
Gripenberg et al. (1990, Definitions 9.2.1, 9.5.1 and 9.5.2).

We now provide several kernels of interest that satisfy (3.2). In particular, we stress
that (3.2) does not exclude a singularity of the kernel at s = t.

Example 3.1. (i) For H € (0, 1), the fractional Brownian motion with covariance func-
tion (2.18) admits a Volterra representation of the form (3.1) on [0, 7] with the kernel

(t —s)H=1/2 11 1 t
K -8 R (H- - HH+y 1" <
H(tas) F(H—F%) 2471 272 ) +27 s ) Sfta

where 9 F} is the Gauss hypergeometric integral, see Decreusefond and Ustunel (1999).

(ii) If K is continuous on [0, 7]?, then (3.2) is satisfied by boundedness and the dominated
convergence theorem. This is the case for instance for the Brownian Bridge W
conditioned to be equal to Wg Uat a time Ty: for all T < Ty, Wt admits the Volterra
representation (3.1) on [0, 7] with the continuous kernel K (¢,s) = (11 —t)/(T1 — s),
for all s,t <T.
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(iii) If K7 an Ko satisfy (3.2) then so does Kj * Ky by an application of Cauchy-Schwarz
inequality.

(iv) Any convolution kernel of the form K (t,s) = k(t — s)1,<; with k € L2([0, T], R%*4)
satisfies (3.2). Indeed, for any t < T,

T t t T
2ds = — 5)]2ds = s)|2ds s)|2ds
/0 K(t,3)] ds—/o k(t — 5)[2d /O|k-< )2 g/o Ik(s)|2ds,

yielding the first part of (3.2). The second part follows from the L?-continuity of k,
see (Brezis, 2010, Lemma 4.3).

We denote the conditional expectation of X by
gi(s) =E[X|F], t<s<T, (3.5)

which is well-defined thanks to (3.4). For each ¢ > 0, we denote by C; the conditional
covariance function of X with respect to F3, that is

SAu
Ci(s,u) = / K(s,r)K(u,r)"dr, t<su<T. (3.6)
t

C satisfies the assumption of Theorem 2.7 as shown in the next lemma. The expression
of the strong derivative of C} is given in terms of the density Cy of the kernel C; given by
(2.4) under the following additional assumption on the kernel:

T
sup/ |K (s,t)|%ds < oo. (3.7)
<1 Jo

Lemma 3.2. Under (3.2), (s,u) — Ci(s,u) is continuous, for all t <T and (2.28) holds.
Furthermore, under (3.7), t — Cy is strongly differentiable on [0, T] with derivative Cy at
t < T given by the integral operator induced by the kernel Cy given by (2.4), that is

T T
(th)(s) = / Ct(S,'LL)f(U>ClU = / Ct(sv U)f(U)dU, f € L2 ([OvT]7RN) .
0 t
Proof. First, it follows from (3.3) that the process X is mean-square continuous, which

implies the continuity of (s,u) — Cy(s,u). Second, an application of the Cauchy-Schwarz
inequality on (3.6) yields

2
T
|Ct(s,u)|2 < <sup/ \K(s',r)|2dr>
0

s'<T
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which proves (2.28). Finally, to prove the differentiability statement, we fix ¢ < T and first

observe that
T T T 2
//]Ct(s,u)\zdsdu—</ |K(s,t)y2ds>
0o Jo 0

which is finite by virtue of (3.7). Whence, the kernel C; belongs to L? ([0, T2, RV*N) so
that it induces a linear bounded integral operator C; from L2 ([0, T],RY) into istelf. We

now prove that r — C, is differentiable at ¢ with derivative given by C,. For this, fix
felL? ([O,T],RN), s <T and h such that t + h < T. Using the fact that, for all u,s < T,

t — Cy(s, u) is absolutely continuous with density Cy(s,u), we get that

t+h
(Ceenf)(s) — (Cef)(s) — h(Cuf) (s / | (6 = Cutsw)) arfludu = Aco).

We now bound the right hand side in L? ([0, T], RN ) Successive applications of the Cauchy-
Schwarz inequality together with the Fubini-Tonelli theorem yield

4. = [ ' (/ ' A s - a(s,u)) drf(U)dU>2d8
sty [ (€ is. )’ dudsar

t+h 2
fHCHh—Ct hCillop < / // — (s, u)> dudsdr-.

The right hand side goes to 0 by virtue of (3.7), which ends the proof. O

Therefore,

3.1 A first representation

By construction the process X X | is S‘j_fvalued and its Laplace transforms can be deduced
from Theorems 2.2 and 2.7. Indeed, using the vectorization operator vec, which stacks the
column of a d X m—matrix A one underneath another in a vector of dimension N = dm, see
Appendix B, the study of the matrix valued process X reduces to that of the R¥"-valued
Gaussian process Z = vec(X) as done in Section 2.

The following theorem represents the main result of the paper.

Theorem 3.3. Let X be the d x m—matriz valued process defined in (3.1) for some Volterra
kernel K satisfying (3.2) and (3.7). Fixt <T. For any u € Si,

exp <— tr (u (Ig+ 2C(T, T)u) gt(T)gt(T)T))
det (I + 2C,(T, T)yu)™?

E [exp (—tr <uXTX1T>> ‘ ft} - . (3.8)
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For any w € Si, the Laplace transform

Lir(w)=E [exp (— /t g (wXSXJ ) ds) ) ft} :

s given by

Li7(w) = exp (qﬁt’T —|—/ tr (gt(s)T\IItyT(ds,du)gt(u))> , (3.9)
(t.1]?
where (¢, V) are defined by

— tr (xpt,T(ds, du)K(u,t)K(s,t)T) , brr=0, (3.10)
(t,T]?
Wy (ds, du) = —wipe—yy(ds, du) — VwRY (s, u)/wdsdu, on [t,T], (3.11)

where R’r is the d x d-matriz valued resolvent of (—2v/wCi\/w), with Ct the conditional
covariance function (3.6) and g; the conditional mean given by (3.5). In particular, t —
Wi 1 solves the Riccati equation with moving boundary

Yer =2 x Cox U on (T ae., (3.12)
Yer(t,-) = wt,T(',t)T =0 on [t,T] a.e., (3.13)

where Y (s, u) = VwR (s, u)v/w.

Proof. Setting Z = vec(X) and W = vec(W), an application of the vectorization operator
vec on both sides of the d x m—matrix valued equation (3.1) yields the N := dm dimensional
vector valued Gaussian process

Zs = vec (go(s)) + /Os K(s,u)dW,. (3.14)

where K is the RV*YN kernel
K:(s,u) — (I, @ K(s,u))

coming from the relation (B.1), with ® the Kronecker product. Whence, the conditional
mean and covariance functions of Z are given respectively by vec(g¢) and

Ci(s,u) = (I, @ Cy(s,u)), u,s <T. (3.15)
In addition, due to (B.2),

tr(wXX ") =Z" (I, ow)Z, weSY.
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e We first prove (3.8). Fix t <T and u € Si. An application of Theorem 2.2 yields

exp (—Hy(T))
det (In + 2C(T, T) (I, ® u))/?’

E [exp (—Z;(Im ® u)ZT> ‘ ft} _

with
Hy(T) = vec(gi(T)) " (Im @ w) (In + 2C(T, T) (I, @ 1))~ " vec(ge(T)).
We observe that by (3.15) and successive applications of the product rule (B.3)

(Im @ (I + 2C,(T, T)u))
_ (Im ® (Ig + 2C4(T, T)u)_l)

where the last equality follows from (B.5). Another application of (B.3) combined with
(B.2) yields that

Hy(T) = tr (u (I + 2C4(T, T)u)~" gt(T)gt(T)T) .

Similarly,

det (In +2C(T,T)(Ip, ® u)) = det (I, ® (Ig+ 2C(T,T)u))
=det (I, ® (Ig+ 2C(T, T)u))
=det (I + 2C(T, T)u)™
where we used (B.6) for the last identity. Combining the above proves (3.8).

e We now prove (3.9). Fix t <T and w € Si. An application of Theorem 2.7, justified by
Lemma 3.2, yields that

Lir(w) = exp (gbt,T +/ vec(gt(s))T{IVftT(ds,du) Vec(gt(u))> , (3.16)
(¢,T]2
where
dor = — / tr (T p(ds, dwK(w, 0K (s.)T) . b =0, (3.17)
(¢,7]?

\AI;t,T(dsa du) = —(Im @ w)ds=y(ds, du) — (I, @ Vw) ~%‘jT(s, w) (I, ® Vw)dsdu,

and ﬁi”T is the resolvent of 2C{’(s,u). The claimed expressions now follows provided we
prove that

Rir = (I ® RYp) (3.18)
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where R} is the resolvent kernel of 2C}"(s,u). Indeed, if this is the case, then, using the
the product rule (B.3) we get that

‘T’t,T =L @Yy 1), (3.19)

where W, 7 is given by (3.11), so that, by (B.2),

vee(gu(s)) W1, (ds, du) vee(gi (u) = tr (gi(s) "Wy r(ds, du)gu(u) )

Plugging (3.19) back in (3.17) and using the identity (B.4) yields (3.10). Combining the
above shows that (3.16) is equal to (3.9). We now prove (3.18). For this, we define

Rir = (Im ® RZ’T) . Then, it follows from the resolvent equation (2.25) of R}y and the
product rule (B.3) that R}’ solves

tr = —2C; — 2R xCt,  Rip xCp = Co x R,

showing that R}’ is a resolvent of (—2C;). By uniqueness of the resolvent, see Gripenberg
et al. (1990, Lemma 9.3.3), (3.18) holds.

e Finally, the Riccati equations (3.12)—(3.13) follow along the same lines by invoking The-
orem 2.7. O

Remark 3.4. Proposition 2.6 can be applied to the vectorized Gaussian process Z = vec(X)
given by (3.14) to get an approzimation formula for

T T

E [exp (—/ tr (wXSXST) ds) ‘ .7-}] =K [exp (—/ tr <Z§(Im ® w)Z5> ds) ‘ .7-}] .
t t

3.2 A second representation for certain convolution kernels

The aim of this section is to link the Volterra Wishart distribution with conventional linear-
quadratic processes (Chen et al., 2004; Cheng and Scaillet, 2007) for the special case of
convolution kernels:

K(t,s) =k(t —s)ls<; suchthat k(t) = / e tu(dx), t>0, (3.20)
Ry
where p is a d X m—measure of locally bounded variation satisfying
/ (1 A 33_1/2) |pe|(dx) < oo, (3.21)
R

and |p| is the total variation of the measure, as defined in Gripenberg et al. (1990, Defini-
tion 3.5.1). The condition (3.21) ensures that k is locally square integrable, see Abi Jaber
et al. (2019b, Lemma A.1). This is inspired by the approach initiated in Carmona et al.
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(2000) and generalized to stochastic Volterra equations in Abi Jaber and El Euch (2019b);
Cuchiero and Teichmann (2019); Harms and Stefanovits (2019).

Several kernels of interest satisfy (3.20)-(3.21) such as weighted sums of exponentials
and the Riemann-Liouville fractional kernel Kry (t) = ng%ﬁz), for H € (0,1/2). We refer
to Abi Jaber et al. (2019b, Example 2.2) for more examples.

A straightforward application of stochastic Fubini’s theorem provides the representation
of (X¢, g¢)+>0 in terms of p and the possibly infinite system of d x m-matrix-valued Ornstein-

Uhlenbeck processes
t
Yi(z) —/ e T gW,, t>0, zeRy,
0

see for instance Abi Jaber et al. (2019b, Theorem 2.3).

Lemma 3.5. Assume that K is of the form (3.20) with u satisfying (3.21), then

Xe=alt)+ [ pldo)ico) ST,
(s) = a0(s) + [ e Dn(dn)viga), t<s<T.

Combined with (3.9), we get an exponentially quadratic representations of the charac-
teristic function of XX ' in terms of the process Y.

Theorem 3.6. Assume that K is of the form (3.20) with u satisfying (3.21) and fixw € Sfil_.
Then,

Lir(w) = exp <@t7T +2tr < AtyT(x)Tu(dx)Y}(x)>

R
+tr< . lé(w)Tu(dw)TFt,T(x,y)u(dy)Yt(y)> ) (3.22)

where t — (O¢ 1, Ay, o) are given by

®t7T = / tr (go(s)T\I’t7T(dS, dU)g[)(S)) + ¢t,T7 (323)
(t.T]?

A () :/ e~ 1 (ds, du)go(u), (3.24)
(t.T]?

Lyr(z,y) :/ e, 1 (ds, du)e VY, (3.25)
(t.T]?

with (¢, ¥) as in (3.10)-(3.11).
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A direct differentiation of (©, A, I") combined with the Riccati equations (3.12)—(3.13)
for (¢, V) yield a system of Riccati equation for (©,A,T).

Proposition 3.7. The functions t — (O, Ae 1, L) given by (3.23), (3.24) and (3.25)
solve the system of backward Riccati equations

Our = —Rolt, A7, Tor), Or7r =0, (3.26)
A,;T(:L") =aNr(x) — Ra(t, Aer, Ter) (), Arr(xz) =0, (3.27)
Ivr(z,y) = (@ +y)Tir(e,y) — Ra(Tur)(2,y), Lrr(r,y) =0, (3.28)

where

Ro(t, A, T) = —tx (go(t) Twan(t)) +mtr ( /R 2 r<x,y>u<dy>u<dxf)

ou (( 5 M)t ) 5 A(yﬁu(dy))T) ,

Rat 1)) = —umn(t) +2 ([ T utan ) ( A<y>Tu<dy>>T,

+ Ry

Ra(0)(a9) = w2 ( [ + o) ( R0 y')u(dy'>)T.

Similar Riccati equations to that of I' have appeared in the literature when dealing
with convolution kernels of the form (3.20) in the presence of a quadratic structure, see
Abi Jaber et al. (2019b, Theorem 3.7), Alfonsi and Schied (2013, Theorem 1), Harms and
Stefanovits (2019, Lemma 5.4), Cuchiero and Teichmann (2019, Corollary 6.1). A general
existence and uniqueness result for more general equations has been recently obtained in

Abi Jaber et al. (2019c).

Remark 3.8. The expression (3.22) can be re-written in the following compact form
Lyp(w) = exp (O + 2(Ay 1, Vi) + (Y2, TerYi),) -

where Ty 1 is the integral operator acting on L*(u, R¥*™) induced by the kernel Ty p:

Turf)@) = [ Turlepuldnf), e DR
and (-,-), is the dual pairing

(f;9)u=tr ( A f(f)Tu(dx)Tg(x)> o (f.9) € LY, R x L°(u T R™).
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We end this subsection with two examples establishing the connection with conventional
quadratic models.

Example 3.9. Fix ¥ ¢ R?™? For the constant case k = ¥ we have p(dz) = %do(dz),
supp 4 = {0} and Y;(0) = W; € R¥™. For go(t) =0, A =0 and (3.26) and (3.28) read

Our = —mtr (Ft,T(o, O)ZZT) : Orr =0,
[:7(0,0) = w — 2T 7(0,0)2% T, 7(0,0), T'7.7(0,0) = 0.

These are precisely the conventional backward matrix Riccati equations encountered for
conventional Wishart processes, see Alfonsi (2015, Equation (5.15)). In this case, we recover
the well-known Markovian expression for the conditional Laplace transform (3.22):

E [exp < /t i (—wwswj ) ds) ( .7-}} = exp (et,T ttr (rt,T(o, O)WtWtT)> .

Example 3.10. Fixn > 1, 2} € R} and ¢} € R4 i =1,...,n. Consider the kernel
n
EM(t) =) dre ™ >0, (3.29)
=1

which corresponds to the measure p"(dz) = Y i ¢j'dzn(dx). The system of Riccati equa-
tions (3.26), (3.27) (3.28) is reduced to a system of finite dimensional matrix Riccati equa-
tions for with values in R x R"¥X™ x RX7d giyen by:

@ZT =tr (go(t)ngo(t)> — mtr (FZTC’") — 2tr (A?;C’”A?’T) ,  Opp =0, (3.30)

\l'; = D" + B"Alp — 2120 C" Ay, A} p =0, (3.31)

IYp = A"+ B"T}p + TPpB" — 2T} C Ty, I =0, (3.32)

where forallr =1,...,mi,j,=1,...,nand k,l=1,....d, p=(i—1)d+k,q = (j—1)d+l,
(DY) = (wgo(t)™, (Af7)"" = Aep(i)™,

(Cn)Pq — (C?C}ﬂ')kl’ (FZT)pq — Ft,T(xgl,l'?)kl,

and A" and B"™ are the nd x nd defined by
A= (1, @w), B = (diag(al,..., ) @ L)

with 1, the n x n matrix with all components equal to 1. The Riccati equation (3.32) can
be linearized by doubling the dimension and its solution is given explicitly by

Pr=Gao(T —1)Gy(T —t)~", t<T,
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where
<g:1),8 gi%) = oxp (t <__2%nn _B’in», LT,

see Levin (1959). Furthermore, we recover the well-known Markovian expression for the
conditional Laplace transform (3.22):

Pr(w) = exp (077 + 2t (ALFF) + tr (T V9T ) ) (3.33)
where
(Y7)" = (V)" (3:34)
p=(i—1)d+k,foreachi=1,....n,k=1,....d,r=1,...,m.

The previous example shows that Volterra Wishart processes can be seen as a superposi-
tion of possibly infinitely many conventional linear-quadratic processes in the sense of Chen
et al. (2004); Cheng and Scaillet (2007). This idea is used to build another approximation
procedure in the next subsection.

3.3 Another approximation procedure

An application of the Burkholder-Davis-Gundy inequality yields the following stability
result for the sequence

¢
X7 =gp(t) +/ k' (t —s)dWs, n>1,
0

where g& : [0,T] — R®>™ and k" € L2(]0, T], R™*%), for each n > 1.
Lemma 3.11. Fiz k € L?([0,T],R¥9) and go : [0,T] — R>™ measurable and bounded.
If

T
/ |k™(s) — k(s)?ds = 0 and sup|gi(t) — go(t)] = 0, as n— oo, (3.35)
0 t<T

then,

supE[|X{" — Xy[P] =0, as n—o0, p>2.
t<T

Combined with Example 3.10, we obtain another approximation scheme for the Laplace
transform based on finite-dimensional matrix Riccati equations (compare with Remark 3.4).
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Proposition 3.12. Fiz w € S4 and t < T. For each n, let k™ be as in (3.29) for some
o € Ry and c € R4, Assume that (3.35) holds. Then,

Lir(w) = HILH;O exp <@ZT +2tr (A?}fﬁ") +tr (F?T}Z”}Z”T))
where (O™, A", T™) solve (3.30), (3.31) and (3.32) and Y™ is given by (3.34).

Proof. Fix t < s < T. Writing X?TwX? — X]wX, = (X7 + X,) Tw(X? — X,), we get by
the Cauchy-Schwarz inequality that

T
E / (X"MTwX" — X wX,)ds
t

2
] < csup (E [| Xs] + E [|XI°]) supE [| X7 — X,°],
s<T s<T

for some constant ¢ independent of n. It follows from Lemma 3.11 that (supy<r E [| X7]?])n>1
is uniformly bounded in n, so that the right hand side converges to 0 as n — oco. Whence,
ftT XrTwXnds — ftT X/ wX,ds a.s. along a subsequence and the claimed convergence

follows from the dominated convergence theorem combined with (3.33). O

For d = m = 1 and k of the form (3.20) for some measure p, for suitable partitions
(n)o<i<n of Ry, the choice

ny 1 [
= / p(dx) and 2z = n/ zp(dx), i=1,...,n,
n 1 Jn

n C n
i—1 i—1

ensures the L?-convergence of the kernels k™ in (3.29), we refer to Abi Jaber (2019);
Abi Jaber and El Euch (2019a) for such constructions, see also Harms (2019) for other
choices of quadratures and for a detailed study of strong convergence rates.

4 Applications

4.1 Bond pricing in quadratic Volterra short rate models with default
risk

We consider a quadratic short rate model of the form
e = tr (X;QX,:) +£&@1), t<T,

where X is the d x m Volterra process as in (3.1), Q € Si and £ : [0,7] — R is an input
curve used to match today’s yield curve and/or control the negativity level of the short
rate. The model replicates the asymmetrical distribution of interest rates, allows for rich
auto-correlation structures, and the possibility to account for long range dependence, see
for instance Benth and Rohde (2018); Corcuera et al. (2013).

26



An application of Theorem 3.3 yields the price P(-,T) of a zero-coupon bond with
maturity 1"

PULT) = [exp <_ /t ! rsds> | ]—"t} — oxp (- /t Tf(s)ds) Lor(Q), t<T,

where L is given by (3.9).
One can also add a spread by considering the stochastic process

A = tr (XI@X,:) + &), t<T,

for some Q € Si and §~ : [0, 7] — R4 bounded function. By definition the spread is nonneg-
ative, correlated to the short rate with a possible long range dependence or roughness. The
introduction of A can serve in two ways. Either in a multiple curve modeling framework,
to add a risky curve on top of the non-risk one with instantaneous rate r + X\ or to model
default time. In the latter case, A would correspond to the instantaneous intensity of a
Poisson process N such that the default time 7 is defined as the first jump time of N. In

both cases, we denote by P(-,T") the price of the risky curve or the price of a defaultable
bond paying 1,<7 at maturity 7. Then, the price is given by

P(t,T) =E [exp < /tT(rs + )xs)ds) ’ ft}
= o (~ [ (€6 + Eo0as) £7@+ Q)

for all t < T, we refer to Lando (1998) for more details on the derivation of the defaultable
bond price.

In practice, Proposition 3.4 can be used to approximate L;7, and consequently P
and P, see also Remark 3.4. For kernels of the form (3.20) the approximation results of
Section 3.3 also apply.

4.2 Pricing options on volatility /variance for basket products in Volterra
Wishart covariance models

We consider d > 1 risky assets S = (S',...,99) such that the instantaneous realized
covariance is given by

d(log S); = X: X, dt (4.1)

where X is the d x m process as in (3.1). The following specifications for the dynamics of
S fall into this framework.
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Example 4.1. (i) The Volterra Wishart covariance model for d = m:

dS; = diag(S;)X;dB;, Sp € R
Xt - gO / K t S 87

with go : [0,7] — R%*? a suitable measurable kernel K : [0,7])? — R4 a d x d
Brownian motion W and

B =tr (ijjT) +4/1—tr <pjpjT> Wi j=1,....,d,
for some p; € RIX™ gsuch that tr (pjp;r> <1, for j = 1,...,n, where W+ is a
d-dimensional Brownian motion independent of W.

(ii) The Volterra Stein-Stein model when d = m = 1:
dS; = S¢XydBy, Sp >0,

X, = golt / K(t,s)dW,, d(B,W), = pdt,

for some p € [—1,1].

The approach of Carr and Lee (2008), based on Schiirger (2002), can be adapted to
price various volatility and variance options on basket products. Indeed, consider a basket
product of the form

d
Py = Zaj logS! =a'logS;, t<T,
j=1
for some a = (avy,...,aq) " € Re Tt follows from (4.1) that the integrated realized variance
X of P% is given by

t t
Xy = / o X X ads = / tr <aaTXSXST> ds, t<T.
0 0

Fix ¢ € (0,1] and consider the g-th power variance swap whose payoff at maturity T is

given by
T q
(XF)!—F = </ tr (aaTXsXJ) ds) —F,
0

for some strike F' > 0. In particular, for ¢ = 1/2 one recovers a volatility swap and for
q = 1 a variance swap. The value of the contract being null at ¢ = 0, the fair strike Fy

reads
T q
(/ tr (aaTXSXJ) ds) ] .
0
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The following proposition establishes the expression of the fair strike in terms of the
Laplace transform provided by Theorem 3.3.

Proposition 4.2. Assume that 0 < q < 1, then the fair strike of the q-th power variance
swap is given by

2,

P q /OO 1—-Lor (zaaT)d
T T —-q) Jo zatl

where L is given by (3.9). If ¢ =1, the fair strike for the variance swap reads

Fy = /OT tr (aaTgo(s)go(s)Tds) ds + /OT /OS tr (aaTK(s,u)K(s,u)T> duds.

Proof. For 0 < q < 1, applying the identity

q 00 1 _ g—2V

1= dz, 0<gq<1, >0,
’ r<1—q>/o gt TRAS 0

see Schiirger (2002), tov = fOT tr (aaTXSXST) ds, taking expectation and invoking Tonelli’s

theorem together with Theorem 3.3 yield the claimed identity. For ¢ = 1, one could proceed

by differentiating the Laplace transform or more simply by using the dynamics of X X T as

in Remark 2.1. O

Similarly, one can obtain the following formulas for negative powers

T —-q [e%s}
1 _,1l/q
t( TXXT)d :/ Lor(z%0aT)e " "dz, €,q>0,
(/0 r{aa’ XX, Jds+e Ta+q / or(z/aa’ e z, €,q>

using the integral representation, taken from Schiirger (2002),

v 9= - /OO e, q,v>0
ql'(1+q) Jo n
Again, the approximation formulas of Remark 3.4 and Section 3.3 can be applied to
compute Lo 7.

E

A Wishart distribution

Proposition A.1. Let & be an RN Gaussian vector with mean vector p € RN and co-
variance matrix 2 € Sf , then €7 follows a non-central Wishart distributions with shape
parameter 1/2, scale parameter 2% and non-centrality parameter M,uT, written as

1

€67 ~ WISy (2,M,22) |

Furthermore,

B {exp (_ o (ufﬁT)ﬂ _exp (—tr (u(In +2%u)tup’))

, ueSY.
det (I + 2%u)"/? -
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B DMatrix tools
We recall some definitions and properties of matrix tools used in the proofs throughout the

article. For a complete review and proofs we refer to Magnus and Neudecker (2019).

Definition B.1. The vectorization operator vec is defined from R¥*™ to RY™ by stacking
the columns of a d x m-matrix A one underneath another in a dm-dimensional vector
vec(A), i.e.

VGC(A)p = Aij’ p= (] - 1)d + i,

foralli=1,...,dand j=1,...,m

Definition B.2. Let A € RUX™ gnd B € R%2*™2. The Kronecker product (A ® B) is
defined as the dida X mimeo matrix

AnB cee AlmlB
A®B= : :
Ag1B - Agym B

or equivalently
(A® B)pqg = AixBji, p=(—1)do+j, q=(k—-1)ma+],
foralli=1,...,dy,j=1,...,do, k=1,...,my andl=1,...,ma.

Proposition B.3. For matrices A, B,C, D, X,w of suitable dimensions, the following re-
lations hold:

vec(AXB) = (BT ® A) vec(X) (B.1)

tr(A TwA) vec(A) T (I, ® w) vec(A) (B.2)

(A® B) (C® D) = ( C © BD) (B.3)
tr(A® B) = tr(A ) r(B) (B.4)

(A® B) '=Aa'teB™) (B.5)
det(I, ® A) = det(A)™ (B.6)

C Proof of Theorem 2.7

Throughout this section we assume that the function (s, u) — Cy(s,u) is continuous such
that (2.28) holds, where C; is given by (2.3).
For each t < T, we consider the integral operator C; induced by the kernel C}

T
(Cif)(s / Ci(s,u) u)du:/ Ci(s,u)f(u)du, fe L*([0,T],RY), s<T,
t
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where the last equality follows from the fact that Cy(s,u) = 0 for any u < t. We assume
that ¢ — C; is differentiable with derivative C; given by (2.21).

Lemma C.1. Let w € SY and t — R be defined as in (2.24). Then,

T T
Sup/ / |RY (s, u)|*dsdu < oo, (C.1)
t<TJt Ji

T
sup sup/ |RY (s, u)>du < oo, (C.2)
t<T t<s<T J¢

sup sup |R{p(s,u)| < oo. (C.3)
t<T t<su<T

Proof. Fix t <T. It follows from (2.24) that

A(\1 T T
/ / |RY (s,u)] deu_Z(lf—L\ 42 :4\w]/t /t |Cy(s,u)|*dsdu,

which, combined with (2.28), proves (C.1). Furthermore, an application of Jensen and
Cauchy-Schwarz inequalities on the resolvent equation (2.25) yields

T
IRY(s,u)|* <8sup sup |Cprp(s,u)? (1 + T/ \Rf(z,u)]%z) , t<s,u<T.
t'<Tt'<s' u'<T t
Integrating the previous identity with respect to u leads to
T T T
/ IRy (s,u)|*du < 8T sup sup |Cyp(s',u)|? <1 —i—T/ / ]R”g”(z,u)\%zdu) ,
t t'<Tt<s' w<T t t

for all s > ¢t. Combined with (2.28) and (C.1), we obtain (C.2). Finally, it follows from the
resolvent equation (2.25) together with Jensen and Cauchy-Schwarz inequalities that

T
Rs.P<sswp sup[Corsa)P (147 [ |REGs2) P
t'<Tt'<s' u'<T t

for all ¢ < s,u < T. The right hand side is bounded by a finite quantity which does not
depend on ¢, thanks to (2.28) and (C.2), yielding (C.3). O

Lemma C.2. For eacht < s < T, u — R}’:(s,u) is continuous. For each s,u < T,
t — RYp(s,u) is continuous.

Proof. The first statement follows directly from the continuity of (s,u) — C(s,u) for all
t < T, the resolvent equation (2.25) and the dominated convergence theorem which is
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justified by (2.28). The second statement is proved as follows. Fix t < s,u < T and h € R
such that 0 <t + h < T. The resolvent equation (2.25) yields

2 (5, u) — R (s,0) = —2(CP(s,u) — C¥(s, )

T

9 / R (5, 2)(C (20 u) — CF(2, )=
T

9 / (RE (5, 2) — R (s, 2))C (2, u)dz
t+h

+ 2/ R\ 1, (s, 2)Cyy (2, u)dz
t

=I+II+III+1IV

Since t — Cy(s,u) is absolutely continuous, we have that I — 0 as A — 0 and also
that IT — 0 by an application of Cauchy—Schwarz inequality, the bound (C.3), and the
dominated convergence theorem, which is justified by (2.28). To prove that IIT — 0, we
fix ¢ € RY and f,(s) := C{(s,u)q. Then,

T
[ B, 2) = RE(s, )0 (2 w)ads = (RE L)) — (REF)() 0. ash— 0,
t
where the convergence follows from the continuity of ¢ — R}’ obtained from that of ¢ — Cy,
recall (2.26). By arbitrariness of ¢, we get IIT — 0. Finally, it follows from (2.28) and

(C.3), that IV — 0 as h — 0. Combining the above yields R}, (s,u) — R{(s,u) as
h — 0. O

Lemma C.3. t — R{’r(s,u) is absolutely continuous for almost every (s,u) such that

T
R¥7(s,u) = =2v/wCi r(s,u)v/w — 2/ VwCi (s, z)VwRr(z,u)dz
t
T .
—2/ RﬁT(S,z)ﬁCt,T(z,u)\/Edz
t
T T ]
- 2/ / R (s, 2)VwCyr(z, 2 )WwREr (2 u)dzdz',  on [t,T] a.e.
t Jt
with the boundary condition

Rir(-,t) = Rip(t, )" =0, t<T. (C.4)

Proof. The boundary condition (C.4) follows from the resolvent equation (2.25) and the
fact that Cy(-,t) = Cy(t,-)T =0, for all t < T..
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Step 1. It follows from (2.26) and the fact that ¢ — C; is differentiable, that ¢ — R}y is
differentiable, so that

(R f)(s) = RELS)(s) + MR F)(s) +o(|h]),  f e L*([0,T],RY), s<T(C.5)
for all h € R such that 0 <t+ h < T, with
Y = —2(id + RYp)vVwCyrvw(id + Rip).

The right hand side being a composition of integral operators, RtT is again an integral
operator with kernel given by

—2(6 + R’p) * VwCyrvw* (5 + Riyp),

where by some abuse of notations § denotes the kernel induced by the identity operator id,

that is (idf)(s ft s=u(ds,du) f(u) = f(s).
Step 2. Fix f a measurable and bounded function, ¢, h such that 0 <¢t+h < T, s <T and

write

( t+hTf S, U / Rt+hT S U)f( )du
T
=<R%¢Xaur+[ (R (5, 0) — R¥p(s,u)) f(u)du
t+h
—A‘ (R pr(s,0) — Rp(s,0)) f(u)du

t+h
+[ (R¥p(s.t) — R¥p(s,w) f(u)du
=I+IT+1III+1IV

where we used the vanishing boundary condition (C.4) to introduce Ry’ (s,?) in IV. Sub-
tracting the previous equation to (C.5) yields

IT = AR, f)(s) — TIT — IV + o(| k). (C.6)

An application of the Heine-Cantor theorem yields that the continuity statements in
Lemma C.2 can be strengthened to uniform continuity. Whence, for an arbitrary ¢ > 0
and for h small enough,

sup |Rip(s,t) — Rilp(s,u)| + sup  [Riy p(s,u) — Rip(s,u)| <e, t<s<T.
u€lt,t+h] ' uE[t,t+h] ’ '

This yields |III| 4 |IV| < che, for some constant ¢ > 0, so that taking limits in (C.6) gives

.1 S w
,&ﬂ% EII = (R{7f)(s).
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An application of the dominated convergence theorem, which is justified by (C.3), yields
that for any u,s < T t — Ry(s,u) is absolutely continuous with

R (s,u) = —2(5 + R’p) » VwCirvw* (6 + Ri'y),
which is the claimed expression. O
We can now complete the proof of Theorem 2.7.

Proof of Theorem 2.7. The claimed expression for the Laplace transform follows from (2.20),
the Riccati equation for ¥ as defined in (2.27) follows from Lemma C.3, and that of ¢ is
straightforward from (2.22). O
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