Fundamental classes in motivic homotopy theory - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2021

Fundamental classes in motivic homotopy theory

Classes fondamentales en théorie de l'homotopie motivique

Résumé

We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of Fulton-MacPherson. We import the tools of Fulton's intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess intersections, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor-Witt spectrum recently constructed by D\'eglise-Fasel, we get a bivariant theory extending the Chow-Witt groups of Barge-Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category.

Dates et versions

hal-02367094 , version 1 (17-11-2019)

Identifiants

Citer

Frédéric Déglise, Fangzhou Jin, Adeel A. Khan. Fundamental classes in motivic homotopy theory. Journal of the European Mathematical Society, 2021, ⟨10.4171/JEMS/1094⟩. ⟨hal-02367094⟩
123 Consultations
0 Téléchargements

Altmetric

Partager

More