U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets

Nikos Paragios
  • Fonction : Auteur
  • PersonId : 923298

Résumé

In this study, we propose a 3D deep neural network called U-ReSNet, a joint framework that can accurately register and segment medical volumes. The proposed network learns to automatically generate linear and elastic deformation models, trained by minimizing the mean square error and the local cross correlation similarity metrics. In parallel, a coupled architecture is integrated, seeking to provide segmentation maps for anatomies or tissue patterns using an additional decoder part trained with the dice coefficient metric. U-ReSNet is trained in an end to end fashion, while due to this joint optimization the generated network features are more informative leading to promising results compared to other deep learning-based methods existing in the literature. We evaluated the proposed architecture using the publicly available OASIS 3 dataset, measuring the dice coefficient metric for both registration and segmentation tasks. Our promising results indicate the potentials of our method which is composed from a convolutional architecture that is extremely simple and light in terms of parameters. Our code is publicly available https://github.com/TheoEst/coupling_registration_segmentation.
Fichier principal
Vignette du fichier
U_ReSNet.pdf (2.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02365899 , version 1 (15-11-2019)
hal-02365899 , version 2 (19-11-2019)

Identifiants

Citer

Théo Estienne, Maria Vakalopoulou, Stergios Christodoulidis, Enzo Battistella, Marvin Lerousseau, et al.. U-ReSNet: Ultimate Coupling of Registration and Segmentation with Deep Nets. MICCAI 2019: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, MICCAI, Oct 2019, Shenzhen, China. pp.310-319, ⟨10.1007/978-3-030-32248-9_35⟩. ⟨hal-02365899v1⟩
380 Consultations
1486 Téléchargements

Altmetric

Partager

More