Solitary wave solutions to the Isobe-Kakinuma model for water waves
Résumé
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of the flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...