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Solitary wave solutions to the Isobe-Kakinuma model
for water waves

Mathieu Colin and Tatsuo Iguchi

Abstract

We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of
the flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for
a Lagrangian approximating Luke’s Lagrangian for water waves. We show theoretically the
existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model
in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is
also provided and suggests the existence of a solitary wave of extreme form with a sharp
crest.

1 Introduction

In this paper we consider the motion of two-dimensional water waves in the case of the flat
bottom. The water wave problem is mathematically formulated as a free boundary problem for
an irrotational flow of an inviscid and incompressible fluid under the gravitational field. Let ¢ be
the time and (z, z) the spatial coordinates. We assume that the water surface and the bottom
are represented as z = n(z,t) and z = —h, respectively. As was shown by J. C. Luke [13], the
water wave problem has a variational structure. His Lagrangian density is of the form

n(w,t)

(1.1) PAuke (P, 1) = / (&CI)(:E, z,t) + %((890@(:17, 2,1))? + (0.9 (=, z,t))2) + gz> dz,

—h
where ® = ®(z,z,t) is the velocity potential and ¢ is the gravitational constant. M. Isobe
[7, 8] and T. Kakinuma [9, 10, 1I] proposed a model for water waves as a system of Euler—
Lagrange equations for an approximate Lagrangian, which is derived from Luke’s Lagrangian
by approximating the velocity potential ® in the Lagrangian appropriately. In this paper, we
adopt an approximation under the form

N

(1.2) O(x,2,t) ~ Z(z—i—h)piqﬁi(x,t),

=0

where pg, p1,...,pN are nonnegative integers satisfying 0 = pg < p1 < --- < py. Then, the
corresponding Isobe-Kakinuma model in a nondimensional form is written as

N
. 1 . _ DiDj 1
HPig,n + {396 <7le+pg+lax¢.> _ 525 ppitp; ¢} =0
o JZ:;] pi+pj+1 ’ pi+pj—1 ’
(13) fOI‘ iZO,l,...,N,
N 1 N 2 N 2
> HPIp; 4+ 5 S HPIOup; | 4072 D piHY g, =0,
\ j=0 j=0 J=0

where H(x,t) = 1+n(z,t) is the normalized depth of the water and § a nondimensional param-
eter defined by the ratio of the mean depth A to the typical wavelength A\. Here and in what
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follows we use the notational convention % = 0. For the derivation and basic properties of this
model, we refer to Y. Murakami and T. Iguchi [14] and R. Nemoto and T. Iguchi [I5]. Moreover,
it was shown by T. Iguchi [5 6] that the Isobe-Kakinuma model (I.3]) is a higher order shallow
water approximation for the water wave problem in the strongly nonlinear regime. We note also
that the Isobe-Kakinuma model (3] in the case N = 0 is exactly the same as the shallow water
equations. In the sequel, we always assume N > 1.

In this paper, we look for solitary wave solutions to this model under the form
(1.4) n=n+et), ¢ = dya+ct), j=0,1....N,

where ¢ € R is an unknown constant phase speed. Plugging (4] into (I.3]), we obtain a system
of ordinary differential equations

/
D - DPiDPj dpi—1
sz + sz+l7]+1 "> -5 2 J sz+PJ } —
! Z{(z)ﬁpﬂrl & pit+pj—1 %
(1.5) for i=0,1,...,N,
N ] N 2 N 2
Y HPigl +n+ 3 STHPIG |+ piHP g =0.
\ Jj=0 j=0 J=0

As expected, this system has a variational structure, that is, the solution of this system is
obtained as a critical point of the functional

Zx(¢o, - -, On, 1) = etk (o, ..., éN,n) + Ek(do, - -, ON, M),

where

///IK(¢0,---,¢N,77):An(x)am(¢app($,ﬁ($)))d$,

(z)
ExK(¢oy -, ON, M) = %/R {/77 ((0x<1>app(x,z))2 + (5—182®app(x72))2)dz + 77(:5)2} dz,

-1
and ®?PP is the approximate velocity potential defined by

N

WPz, 2) = D (2 + 1)Pighi(x, t).

=0

We note that #1x and &1k represent the momentum in the horizontal direction and the total
energy of the water, respectively. Both of them are conserved quantities for the Isobe-Kakinuma
model ([3]). In this paper we do not use this variational structure to construct solitary wave
solutions to the Isobe-Kakinuma model, whereas we use a perturbation method with respect to
the small nondimensional parameter § in the long wave regime.

In order to give one of our main results in this paper concerning the existence of a family of

solutions to (LX), we introduce norms | - || and || - || for £ =0,1,2,..., by
k .
(1.6) lull = sup efu(@)],  Jull =D [u?]
zeR =0



where u9) is the j-th order derivative of u. We also introduce the function spaces B¥ and BY as
closed subspaces of all even and odd functions u € C*(R) satisfying |lul[x < +o0, respectively,
equipped with the norm | - [, and put B = N BX for a = e,0. The following theorem
guarantees the existence of small amplitude solitary wave solutions to the Isobe-Kakinuma
model in the long wave regime.

Theorem 1.1. There exists a positive constant dy such that for any 6 € (0,d0] the Isobe—
Kakinuma model (LB has a solution (65,?’]5,¢8,...,(25(]$V), which satisfies n5,¢8’ € B and
qﬁ‘l;, ey ¢§v € BS°. Moreover, the solution satisfies & =1+ 2v6% and

[ — 4yo?sech?z |, + [|(6f + 4762 tanh z)[|), < Cré?,
”¢§- — 4’y’yj64sech2x tanhz||, < Cpé® for j=1,...,N

for any k € N, where the constants v,v1,...,vn are determined through p1,...,pn and the

constant Cy, does not depend on § but on k.

Remark 1.2. The constants v and v = (y1,...,7n) " in the statement of Theorem[I 1l are given
by vy = A7 (1 —ag) and v = (1 — ag) - AT (1 — ap) with a N x N matriz Ay and a vector ag
given by

(17) A1:<7p"pj ) (1 ag>:<71 >
pitpi—1)1cijen \G0 Ao it i+ 1/ ocijen

and1=(1,..., 1)T. The matrices Ay and Ay are positive, so that the constant v is also positive.
We will use these notations throughout this paper.

Remark 1.3. This theorem ensures the existence of a family of solitary wave solutions to the
Isobe—Kakinuma model traveling to the left. We can also show a similar existence theorem to
solitary wave solutions to the model traveling to the right.

Remark 1.4. By neglecting the term of order O(6%), the solitary wave solutions in the dimen-
stonal form are given by

c~ (14 5%)Vgh,
n(x,t) ~ asech2<1 [ s (@ + ct)),
¢o(x,t) ~ —\/4dygah? tanh(1 [ 7 (@ + ct)),

¢j(x,t) 20 for j=1,...,N,
where g is the gravitational constant and a is the amplitude of the wave.

In this paper we also analyze numerically the existence of large amplitude solitary wave
solutions to the Isobe-Kakinuma model in a special case where we choose the parameters as
N =1 and p; = 2, that is, (T.I)). We note that even in this simplest case the Isobe-Kakinuma
model gives a better approximation than the well-known Green—Naghdi equations in the shallow
water and strongly nonlinear regime. See T. Iguchi [0 [6]. Numerical analysis suggests that there
exists a critical value of § given approximately by

(1.8) 5. = 0.62633493

such that for any ¢ € (0,6.), the Isobe-Kakinuma model (7I]) admits a smooth solitary wave
solution and that this family of waves converges to a solitary one of extreme form with a shape



crest as 0 T d.. Moreover, the included angle 6 of the crest in the physical space is given
approximately by

(1.9) 6 = 152.6°.

See Figure [[L11

T

Z

Figure 1.1: Solitary wave of extreme form with the included angle 6 = 152.6°.

Here, we mention the related results on the existence of the solitary wave solutions to the
water wave problem. The existence of small amplitude solitary waves for the water wave problem
was first given by K. O. Friedrichs and D. H. Hyers [3]. Then, C. J. Amick and J. F. Toland [2]
proved the existence of solitary wave solutions of all amplitudes from zero up to and including
that of the solitary wave of greatest height. On the other hand, a periodic wave of permanent
form is called Stokes’ wave. The existence of Stokes’s wave of extreme form as well as the sharp
crest of the included angle 120° was predicted by G. G. Stokes [4], and then proved theoretically
by C. J. Amick, L. E. Fraenkel, and J. F. Toland [I]. An extension of these existence theories
to the water waves with vorticity was given by E. Varvaruca [16]. The author has proved the
existence of the solitary wave as well as Stokes’ wave of greatest height with a shape crest of the
same included angle 120° as in the irrotational case. As for the model equations for water waves,
it is well-known that the Korteweg—de Vries equation has solitary wave solutions of arbitrarily
large amplitude and does not have any wave of extreme form. The Green—Naghdi equations
are known as higher order shallow water approximate equations for water waves in the strongly
nonlinear regime and have the same solitary wave solutions as those of the Korteweg—de Vries
equation, but again does not have any solitary wave of extreme form. Compared to these models,
the Isobe-Kakinuma model even in the simplest case catches the property on the existence of
the solitary wave of extreme form, although the included angle of the crest is not 120°. We also
mention a result by D. Lannes and F. Marche [12], where it was shown that an extended Green—
Naghdi equations for the water waves with a constant vorticity has a solitary wave solution of
extreme form.

The contents of this paper are as follows. In Section Bl we give conservation laws for the
Isobe-Kakinuma model, which will be used in the numerical analysis in Section [l In Section [3]
by using formal asymptotic analysis we calculate the first order approximate term with respect
to 62 in the expansion (3.2)) of the solitary wave solution to the Isobe-Kakinuma model (L35]). In
Section Ml we reduce the problem by deriving equations for the remainder terms. In Section 5] we
construct Green’s functions for the linearized equations together with their estimates. In Section
[6l we first prove an existence theorem for the system of linear equations derived in Section [l
and then prove the existence of small amplitude solitary wave solutions to the Isobe—Kakinuma
model. Finally, in Section [l we analyze numerically large amplitude solitary wave solutions and
calculate the solitary wave of extreme form together with the included angle.
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2 Conservation laws

As was explained in the previous section, for the Isobe-Kakinuma model (L3]), the mass, the
momentum in the horizontal direction, and the total energy are conserved. In the numerical
analysis which will be carried out in Section[7], we also need to know corresponding flux functions.
The following proposition gives such flux functions.

Proposition 2.1. Any regular solution (n, ¢g,...,dnN) to the Isobe—Kakinuma model [L3)) sat-
1sfies the conservation laws

1
Pji+1 —
(2.1) dm + Oy ; j+1H D) 0,
N
(2.2) at{nax (ZH%)}H? { 10 <ZHP1¢Z> ——n
=0 =0
1 N 1 DiD;
- - gpitpiHl 0,0:) (O _y2_ ) ppitpi-l ; > =0,
+2MZ:O< S R 846
and
2.3 2 HPHPiTL (9 6. (Dybi 52 PiPi  ppitpi-1 ; >
(23) 8 5P+ ;O<p,+p]+1 (0u0)(00) + 67— LL g,
N 1
— 0, —— _HPHPN,0:)(19,) » = 0.
Z-ijﬁpﬁl (0204) (9rt5)

Proof. Conservation law of mass (2.I) is nothing but the first equation in ([3]) with ¢ = 0. It



follows from the equations in (L3]) that

e ey o e ()

N N
= (Oim) Y HP0pp; — (0m) > HP 015
=0

1=0

N
1 A _ DiDj i
————gPitPitly, ) — 6L _priteil } D i
;{ Z{ <p2+pg+1 & pi+pj—1 2 i

+ (Oam [n+ 5 { (ZH J(?m]) +o7 (iijp”l@)Q}]

N
E ! iTPj - Pipj R
- 7le+p + x P 26:) — 6 27JHP7,+I? 1. .

2 <
4,j=0

N
+ (9am) {77 - ST (HP (0,00) (0ay) — 62piij“+Pf2¢i¢j)}

N

1 1 1 A _ DiDj .

=9,8 =n?>— 2 —  HPTPITLY, $)(0p ;) — 62— gPitPiTLg, ) 7
{2n 2Z<pi+pj+1 (0:00)(020)) = 7% == ¥ $ids

Z7j:0

which gives conservation law of momentum (2.2]). We see also that

2 22,’],:0 pit+pj+1 i +pj

N 2 N 2
= (0m) [nJr > { (Z Hp”a:c¢j) +§72 (ijﬂp”l¢j) H
7=0 Jj=0

N
+ Z <;Hpi+pj+l(ax¢i)(atax¢j) _,_5—2&1];[%4-17]‘1@@@)
=0

N
o {1772 + l Z <;Hpi+pj+l(am¢i)(ax¢j) + 52plp]1HPi+Pj1¢i¢j>}

pi+pj+1 pi +pj —

N N
—(@m) Y HP0,:6;+ 0s { 3 1Hpi+?’f“<am¢i)(at¢j>}

=0 ij:Opi+pj+1

p — DbiDj i+pi—1
+ sz+pj+la > _ 5 2 J sz+p] } a .
Z]Z:O{ <pz +p] +1 m¢z i +pj 1 ¢z t¢j

N
1
=0, 030 P 0,6)(010) ¢
{”Zopﬁpﬁl (0.0 t@)}

which gives conservation law of energy (23)).

These conservation laws provide directly the following proposition.



Proposition 2.2. For any reqular solution (1, ¢o,...,¢nN) to the Isobe—Kakinuma model (L5l
satisfying the condition at spatial infinity

(2.4) D), By(2), - O (@), 61(2), - N (2) = 0 a5z — oo,
we have
Yoo
(2.5) en+y ——HPT =0
= p; + 1
and
1 1Y 1 Dipi
2.6 e S — & L AR RO N 4 R § Ly T > =0
(26) o0 -3 ;)<pi+pj+1 L L 6id;

3 Approximate solutions

We first transform the Isobe-Kakinuma model (I.5]) into an equivalent system. The first equation
in (LE) with ¢ = 0 can be integrated under the condition at spatial infinity (2.4]) so that we have

(23, particularly,
N

1
= — HpJ+1
a3

Plugging this into the first equation in (I5]) with ¢ = 1,..., N to eliminate c¢n, we have

N

1 /
Hpi Hpj+1 >
Z(W %

/
— Hpi+pj+1¢/_> _ 52 Pibj Hpi+pj_1¢,},
Z{<pz+pg+1 7 pit+p;—1 ’

which are equivalent to

N 1 1 N DiDi
— HPit2g! 4 572 — ) _HPig; =0
jz:%<pj+1 pi+pj+1> I ;)erpj—l !

for i =1,..., N. Therefore, (LE) under the condition (24 is transformed equivalently into

CTZ+Z

JOJ

7

i+1 7
H”J ¢ =0,
N 1 1 PiDi
— HPit2gl 4 572y " 0 _HPig. =
;<pj+1 pi+pj+1> % Z pi+pj—1 0

for i=1,...,N,
2 2
N

N N
Y HPigl +n+ S OHPG | 4672 D piHP T, =0,

J=0 J=0 J=0

(3.1)

N =

where H =1+ 1.



To simplify the notation, we put ¢ = (¢1,...,0n)T. Suppose that (c,n, ¢g, @) is a solution
to ([3.I) and can be expanded with respect to 42 as

¢ =)+ 8%cqy +0tcg) + -,

n = 6%(nw) + 80y + ey + ),

do = 62 (do(0) + 6% o1y + 8oy + ),
¢ = 0*(p() + 6Py + 6 by + ).

Remark 3.1. In this expansion, we assumed a priori that 1, ¢o, and ¢ are of order O(5%).
This is essentially the assumption that the solution is in the long wave regime.

(3.2)

Then, equating the coefficients of the lowest power of §2 we have A; ®(0) = 0 so that ¢ =
because A; is nonsingular. Equating the coefficients of 6% we have

¢(0)7(0) + Po(0)
( — ag)P) + Ar1pa) =0
¢0 + o) = 0.

It follows from the first and the third equations of the above system that C%O) = 1 in order to
obtain a nontrivial solution. In the following we will consider the case ¢(g) = 1. Then, we have

(3.3) ¢6(0) = =10 Pa)= —‘Y¢/o/(0) = 77720)7

where -y is the constant vector defined in Remark Next, equating the coefficients of §% in
the first and the third equations in ([B1]) we have

{%) + By Cy0) + 100y + 0 - D1y =0,
B0y +101) )P + 1 Dy + 3(Ph0)” =0,
which together with ([B.3]) yield

3
(3.4) 2¢(1)M0) — 5”?0) ~ oy =0,

where v is the positive constant defined in Remark
As is well known, (8] has a family of solutions of the form

C1) = & o) () = 2a SeCh2(\/%$)

with a parameter o > 0. Then, it follows from (3.3]) that

Po(0) (x ) = —2\/Wtanh(\/7 ) + const.,

¢(1 = —4a’y\/7tanh \/7 sech ( %x)
Therefore, it is natural to expect that (5] has a family of solutions of the form
c=1+ad?+0(5%),
n(z) = 2a6? Sech2(\/7 z) 4+ 0(8%),
( ) = —2/Zays? tanh(\Fx) +0(5%),

= —4047\/764 tanh \/7 ) sechz(\/;m) +0(8%)

with parameters a > 0 and 0 < § < 1.

(3.5)



4 Reduction of the problem

Without loss of generality, we can assume that a = 27v. We denote the approximate solitary
wave solution obtained in the previous section by 7 and ¢y, that is,

(4.1) Ny () = 4y sech’z, b(0)(z) = —4vtanhz.

Then, we will look for solutions to the Isobe-Kakinuma model (L) in the form
(42)  e=14298% n="0n0)+0'C  do =) + 0", & ="ynlg + %,

Plugging these into the first and the third equations in (3I]) we obtain

(4.3) {C + U + G1+ 6% ((2y = m(0))C + 10y o + a0 - ' + Ga) + 6 F1 = 0,

¢+ + Gs + 82 ((2y — ny))vh + 1 -9 + Gy) + 61F =0,
where

G1 = 2910 — 1) + K11(()

Ga = Kan(0) Mo

Gs = —2y10) + g7y + K211{g),

Gla = r2(27 = 10) (g + K)oy + 353 (1(g))%
with k1 = ag -, ko =1 -7, and k3 = (p1,...,pn)T -~ and

N N
Fi = G +mo) D+
7j=1 7j=1

. HHPIT -1 8% (p; + Dngoy) (vmo) + %),

1
= F3+27F4 5(71)0—1'/4277(0))

+ = 5 {(Boy + 6 (00 + ranfy)) + 5 Fy)° - (Sfo) + 0% (v + I{QUE/())))2}

2 2
N
1 _
+50 2{(2;;]-[{?: 1("}/]-7]{0)"‘521/1]')) - (ZPﬂﬂIEO)) }
i=1 =t

with H =1+ 5277(0) + 6%¢ and

N
Fy =10 Y _ pjth +Z<5 (HP7 =1 = 8%pim)) (vl + 0°¢%),

7j=1
N N
= Z Z 2(HP —1)( ’yﬂ]é’o) + (52%).
=1 =1

In the above calculations, we have used the identities

N N
D HPig = 8¢ + 51 (1) + manffy) + 6 (mgn(o)ng’o) +) ¢;) + 88 Fy
=0 j=1

= 82 ¢(g) + 0" (V5 + ran(py)) + 0 Fy.



Since satisfies with ¢y = 2, we have G; = G3, so that is equivalent to
"(0) 1

(4.4) (o) — 27)C + 207 — moy )Wy + (1 — @g) - ¥ = go + % o,
. ¢4 Y0 = gns1 + 02 1,

with go = Go — G4, gnt1 = G1, fo = Fi — Fa, and fyy1 = (no) — 27)¢ — 1 -9’ — Gy — 6°Fa.
On the other hand, plugging ([4.2)) into the second equation in (B.I]), we obtain

where
(4.6) (2(1 — ag) — Ay diag(py, ..., px)Y) Moyl + (Ao — 1 ® ao)ynlh),

g=
(4.7) f=00—aog) (07 (H? = 1= 28%))m(g) + 6 (H* = 1)¢g)
— (Ao — 1® ag)d—? (diag(HP**? = 1,..., HPN*2 — 1)) (yrg) + 6°")
- A1{5_4 (diag(le —-1- 52pm(0), L HPN —1 — 52pN7](0)))’y7]E0)
+ 672 (diag(HP* — 1,...,HPN —1))4}.

To summarize, the Isobe-Kakinuma model (3.1)) is reduced to

(o) = 27)C +2(v = 1(0)) s + (1 — @o) - 4" = go + 6> fo,
(4.8) (1 — ao) 6/ — (52(140 —1® ao)’(b// + A1 =g+ (52f,
C+by = gnyr1 + 8 fnt1

for the remainder terms ({, %o, ). We note that gy and gy are polynomials in (n(o),néo),nélo)),

that g is a polynomial in (77(0)777E0)777E/6))7 and that go,gny+1 € BS° and g € BS°. More-

over, fo and fyi1 are polynomials in (77(0)77720)7772/0)7Cﬂ%al[’ﬂp/)a and f is a polynomial in
"

(N(0)> 77(0 10) LGl ap, 624", whose coefficients are polynomials in 6.

In view of (L)) we proceed to consider the following system of linear ordinary differential
equations

() = 27)¢ +2(y = noy)¥y + (1 — ag) - ¥’ = Fo,

(4.9) (1 —ao)vy —0%(Ag — 1 ®ag)yp” + Ajp = F,
C+ vy = Fny1

for unknowns (¢, g, ). We can rewrite the third equation in (£.9) as

(4.10) (= —¢o+ Fny1,

which enable us to remove the unknown variable ¢ from the equations. It follows from the
second equations in (£9]) that

P =~y + 62 Ay + AT'F,

where Ay = A7 (Ag — 1 ® ag). Plugging this and (@I0) into the first equation in @I, we
obtain

(4.11) — 0+ (4y = 3n(0)) o = Fo + (2y — n)) Fny1 —v - F' = 6°8 - 4",

10



where 3 = A2T(1 — ap). This is the equation for 1. In order to derive equations to solve 1, we
put x = . Then, it follows from (Z3)) that

(4.12) {(1 —ayo) - 1/’/ =Fo+ (2y — n(O))FN-H + (3?7(0) — 4’}/)1%,

(1 — a(])X — 52(140 -1® ao)’l,b// + Al’l,b =F,

This is the equations for (x,). Of course, x is expected to be 1{, but we do not know it a
priori. However, we have the following lemma.

Lemma 4.1. If (,v0,%, and x solve [EI0)-AI2) and satisfies x(0) = 1 (0), then we have
X = Y. Particularly, ¢,vo, and ¥ solve (L9).

Proof. It follows from the second equation in (4.I2]) that
W = —yx + 6% Axp” + ATF.
Plugging this into the first equation in ([4.12)) we have
=X+ (4y = 30Ul = Fo + (2y — no)) Fnyr —v - F' = 628 - ¢

Comparing this with (ZI1)) we obtain (x — ¢{)’ = 0, which gives the desired results. O

5 Green’s functions
In view of ([{.I1]), we first consider the solvability of the equation for an unknown wu
(5.1) —qu” + (4y = 3n))u = f

under the condition u(z) — 0 as z — Foo. We remind that 1 (v) = 4y sech?z, so that this
equation does not depend essentially on the positive constant . This equation has already been
analyzed by K. O. Friedrichs and D. H. Hyers [3]. Let us recall briefly their result. In order to
construct Green’s function, we consider the initial value problems with homogeneous equation:

—yui + (4y — 3n))u1 = 0, —yuy + (4y — 3n))uz = 0,
u1(0) =0, uj(0) =1, u2(0) =1, wuh(0) =0.

The solutions of these initial value problems have the form

u1(z) = sech?z tanh z,
up(z) = £(—6 — cosh(2z) + 15sech®z — 15zsech?z tanh z).

We note that these fundamental solutions satisfy
(5.2) i (@) < Cre ™, Ju? ()] < Cre®!

for k =0,1,2,.... Since the Wronskian is v} (x)uz(x) — ui(x)uh(x) = 1, the solution u of (5.1])

can be written as

mm=W*Qn—Aﬂmwﬂw@)mm+7%Qz+lﬂmwﬂw@)mm,

11



where C7 and (9 are arbitrary constants. In order that this solution satisfies the condition
u(z) — 0 as © — £00, as necessary conditions, we obtain

0

Cy + /O T () fy)dy = Ca / ur (9)f (w)dy = 0,

—00
so that we have a necessary condition
o
(53) | wrway=o
—0o0

for the existence of the solution, and that the solution has the form

ule) = 7w () (01 -[ uz(y)f(y)dy> ) [ wr @

Nonuniqueness of the solution comes from the translation invariance of the original equations.

Proposition 5.1. Let v > 0. For any f € B, there exists a unique solution u € B> to (5.1]).
Moreover, for any k =0,1,2,..., the solution satisfies

ulle+2 < Collfllk + Crll fllo,
where Cy is a positive constant depending on k while Cy does not.

Proof. Since f is even and w; is odd, the necessary condition (53] for the existence of the
solution is automatically satisfied. Moreover, we restricted ourselves to a class of solutions
which are even so that the solution is unique and given by

o0

u(@) = = w@) [ ua) )y =1 @) [ 0w
Using this solution formula, we easily obtain ||u|[xt+2 < Ckl f]l%-
We proceed to improve this estimate. Differentiating (5.I]) j-times, we have
—yuld" + (45 = 3 )ul?) = f9) 4+ 3[(5)7, n(0)Ju

Applying the previous estimate with k& = 0 to «() and adding them for j = 1,2,. .., k, we obtain
llullkre < Cllfllk + Ckllullyr., which together with the interpolation inequality |ul/yree <
ellullyriz.co + CcllullLee < €flullpr2 + Cellullz for any e > 0 yields the refined estimate. O

In view of (£I2]), we then consider the solvability of the system of ordinary differential
equations with constant coefficients

(1 —ao)po — 6* (Ao —1®ag)¢” + Arp = f,
for unknowns ¢y and ¢ = (p1,...,0n)T while fo and f = (f1,..., fx)" are given functions.

We procced to construct Green’s function to this system. By taking the Fourier transform of

(5.4), we obtain ) A A
(- D) (2)-(5)

Now, we need to show that the coefficient matrix is invertible. Put

0 (1 —ag)T
(5.5) q(¢?) = — det <1 —ay (A1 ®0ao) + A1> '

Then, we have the following lemma.

12



Lemma 5.2. q(¢2) is a polynomial in £ of degree N — 1. Moreover, there exists a positive
constant co such that for any & € R we have q(£2) > ¢y > 0.

Proof. It is easy to see that

2y 0 (1—a0)T
9(87) = —det (1—«10 52<Ao—ao®ao>+A1>'

Here, we will show that the symmetric matrix A9 — ag ® aq is positive. In fact, for any ¢ =
(¢1,...,6n)T € RY, we see that

N 1 N 1 2
¢-(Ay—ap®@ap)p = Z m@bi%‘ - <Z m@j)

ij=1 j=1
1, N 2 1 N 2

Z/ (Z%’z“) dz — </ Z¢jz”jdz>
0 \\Z 0 =

>0

by the Cauchy—Schwarz inequality. Moreover, the equality holds if and only if Zjvzl ;2P is
constant for z € [0, 1], that is, ¢ = 0. This shows that Ay — ap ® ag is positive.
Next, we note that for any invertible matrix A and any vector & we have

0 mT . -1
det (w A> =—(detA)x - A x.

This equality comes easily from the identity

1 —2TA! 0 T - —z-Alg o7
0 1d x A) T Al

Since A; is also positive, for each ¢ € R the matrix £?(Ag — ag ® ag) + A; is positive too.
Therefore, we have q(£2) > 0, which yields the second assertion of the lemma.
It is easy to see that q(&2) is a polynomial in &2 of degree less than or equal to N — 1 and

that the coefficient of £2(N—1) ig
(O (1—ag)"
1—a0 AQ—CL()@CL() ’

which is positive due to the positivity Ay — ag ® ag. Therefore, we obtain the first assertion of
the lemma. 0

We denote the inverse matrix by

< 0 (1-ao)" )‘1:<q<<5s>2> q<<as>2>T>
1-ay (5)%(4 — 1®ag) + A q((6)?)  Q((66)%) )

where (%) = (¢1(€%),...,qn(€%))" and Q(€%) = (4;j(€*))1<ij<n- Then, the solution (o, ) to
(54) can be expressed as

(5.6) {¢0 — ((5)%)fo + a((66)) - F,

@ = q((66)%) fo + Q((36)*) f.

13



We note that q(£2), ¢;(£%), and ¢;;(£?) are rational functions in £2, more precisely, we can express
them as

() L Pil€) pij (%)
q(€?)’ qa(é?)’ (&)’
fori,j =1,..., N, where q(¢?) is the polynomial in ¢2 of degree N —1 defined by (5.5]). Moreover,

p(€2), pi(£%), and p;;(£?) are polynomials in &2 of degree less than N — 1. Therefore, by taking
the inverse Fourier transform of (5.6) we obtain

ai(€?) = 0:;(€%) =

(€ =q& +q+

N
w0 = @0’ f§ +qofo+ s fo+ > ris* fi
(5.7) j=1
¢ =qofo+rs* fot Rsx f,
where gy = (qo1,---,q0n)T, m(@) = (ri(z),...,rn(2))T, R(z) = (Tij(x))lgi,jgN’ and r(z),
p;(€

(
rj(x), rij(z) are Fourier inverse of 25523, ((52)), pf;(g)), respectively. We also used the notation

fs(x) = 671 f(672) for any function f(z).
In view of these solution formulae, we consider a function r(z) defined by

2 .
(5.8) (o) = 5 /R EE§2;eled§,

where q(£2) and p(£2) are polynomials in &2 of degree N and of degree less than N — 1, respec-
tively, and q(£2) > ¢p > 0. It is easy to see that r(z) is a real valued, even, and continuous
function on R. Since q(¢2) is a polynomials in &2 of degree N — 1 with real coefficients and
positive definite, roots of q(¢2) = 0 have the form

£:akj:iﬁk, k‘Zl,Q,...,N—l

with 0 < 1 < B9 < --- < Bny_1. Therefore, by the residue theorem we have an expression

N-1
_ + iogz—pPlT
—Zrke se=Belel for xz0

with some complex constants ch, . ,T]j\t,_l. By taking into account the continuity at x = 0, we
have also
N-1
r'(z) = Z riE(iay, F Br)elere=Belel for 2 >0,
k=1

We note that the second derivative r”(z) contains in general the Dirac delta function. Thanks
of these expressions, we have the following lemma.

Lemma 5.3. Let r(z) be defined by (5.8). Then, r(z) is a real value even function and r €
WLe(R). Moreover, there exists positive constants 31 and C such that for any v € R we have

a pointwise estimate
Ir(z)| + |r' ()] < Ce Pl

For § > 0, we put r5(x) = 6~ 'r(6~'z) and consider the function rs * f. We remind the
function spaces B¥ and B for k = 0,1,... defined in Section [ and that the norm || - || was

defined by (L6]).
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Lemma 5.4. Let r(x) be defined by (5.8) and fix &g such that 0 < §g < 1. Then, there exists a
constant C such that for any f € BY (o = e oro) and § € (0, 8] we have rs* f € BL. Moreover,
it holds that

Irs + f1I+ 6]l (rs = )l < CIIfI-

Proof. It follows from Lemma [5.3] that

ose Nl <3 [ (552) irwiay
< Sls1 [ e Heiiay

1 A1 1 B1
_c et o= Baly 4 L (olal _ Bt }
171 5551 )+ 55 )
4C
< — ||
which implies [|rs x f] < 624—_062Hf|] In view of (rs x f)' = r§ * f, a similar estimate holds for
1 0
(rs = f)'. Moreover, it is easy to see that if f is even or odd, then so is 75 * f, respectively.
Therefore, we obtain the desired result. [l

In order to give an estimate for the solution (¢, ¢) to (5.4)), it is convenient to introduce
the following weighted norm

(5.9) [ulliras = llulle + Ollullisr + 62 lullrs
for k=0,1,2,.... By the above arguments, we obtain the following proposition.

Proposition 5.5. There exist positive constants 6y and C such that for any fo, f € BY (a =€
or o) and any § € (0,dp], there exists a unique solution g, € B to (5.4]). Moreover, for any
k=0,1,2,..., the solution satisfies

{Hwo\lk + [lelle+2,5 < Cll follks2,s + [1F]lx),
"l < C@2 1 e + 1 £l1e)-
6 Existence of small amplitude solitary waves

We begin to give an existence theorem of the solution ({, o, %) to the system of linear ordinary
differential equations (£9)).

Proposition 6.1. There exists a positive constant &g such that for any Fy, Fny1 € B, any
F € B, and any 6 € (0,0p], there exists a unique solution (¢, o, ) to [@9) satisfying ¢, Y, €
B, 1 € B, and ¥y(0) = 0. Moreover, for any k =0,1,2,..., the solution satisfies

1ol k2 + ¢ k42,6 + [llk+3.s < Colll(Fo, 1) lkt2,56 + | Flle+1)
+ Cr([[(Fo, Fn+1)ll2,s + 1F 1),

where Cy is a positive constant depending on k while Cy does not.
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Proof. Thanks of Lemma [4.1] it is sufficient to solve ([@II)—(Z12]) for (¢g,?,x) and then to
define ¢ by ({I0). To solve [@II)-(#IZ), we use the standard iteration argument by applying
the existence theorems, that is, Propositions [5.1] and given in the previous section. Suppose
that zﬁo is given so that z% € B2°. By Proposition under the condition 0 < § < §g there
exists a unique solution (g, @) € B to

(1= ag) - = Fy + (27 — no)) Fn41 + (3n(0) — 4v)p,
(1 — ao)(po — 52(A0 —-1® ao)cp” + Aip = F'.

Then, we define x and v by

@ = [ v = [ el
which are odd functions and satisfy

(6.1) (1 —ag) - ¢’ = Fo + (27 — n0)) Fn+1 + (3ng0) — 40,
' (1—ag)x — (4o —1®ag)y” + A1yp = F.

Then, by Proposition 5.l there exists a unique solution g to
(6.2) — 0+ (47 = 3n)) by = Fo + (27 — n)) Fner +v - F' — 68 - 4"

satisfying ¢ € B and ¢9(0) = 0. By using these solutions (x,%,0), we define maps 7y :
Yo = o, T2 Yo = X, T2 : v = . Clearly, To maps

X = {to € C*(R) [ € B, 10(0) = 0}

into itself. We will show that To is a contraction map with respect to an appropriate norm. To
this end, let 19 € X and let (x,,10) be the solutions as above. By Proposition we have

(6.3) 11X Il + 1% lkt2.5 < CUIEF0, Fnir)llot2.s + 1 Fllesr + 196 )lk+2) + Cr(lEnall + I161),
(6.4) 8" Ik < Cll(Fo, Fn+1)llk+2,6 + 1 Flle+1 + 82105 lle+2) + Cr(lEn+1ll + 82 145])-

By Proposition 5.1l we have

196 llk+2 < CUN(Eo, En0)lle + 1F[lx + 615" [lx) + Cr(l(Fo, Fn1)ll + 1 F || + 6% [[4™]),

which together with (6.4]) implies

1ollk+2 < CUIFo, Fxa) sz + 1 F Nkt + 62195 llkw2) + Crlll(Fo, Enga) | + 1 F Il + 6% [[4g])).

Particularly, we obtain

[%6ll2 < C(I(Fo, Fn41)ll2,6 + 1F[l1 + 62[05]|2)-

Therefore, by taking §y so small that 205(2) < 1, we obtain

1 -~
l[4holl2 < 5\\%\\2 + C(II(Fo, Fy+1)ll2,6 + 1 F[]1)

and

1 -
(6.5) 196 [k12 < §H¢6llk+2 + C(I(Fo, Fn+1)llk+2,6 + [[Fllk+1)
+ Crlldoll2 + Cr (I (Fo, Fv1)ll2,s + [1F]0)-
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In exactly the same way as above, we obtain also

||76(7!Eo)' — To(vo) ||z < 2|lvf — %H?’ )
||76(71~)0)' = To(¥o)'[[k+2 < %H% — Yollk+2 + Crllvg — o2, i
71 (o) — Ti(vo) ||k + | T2(¥0) — T2(v0) |kt2,6 < Crllvg — Vpllkto-

On the other hand, it is easy to see that for any function wu satisfying «(0) = 0 we have
|u|[pee < ||u']|. Therefore, by the contraction mapping principle, the map 7o has a unique fixed
point 1y € X. Using this fixed point 1y, we put x = T2(vhg) and 9 = T 2(1hg). Then, we see

easily that (o, x, %) is a solution to ([AII)-(I2). Moreover, it follows from (6.5) and (6.3)
that

6 llkt2 + 19 [lk+2.6 < C'(1(Fo, En+)llk+26 + |1 Fllk+1) + Crl|(Fo, Fy41)ll2,6 + [ F]1),

where C’ is a positive constant independent of k whereas the constant C} depends on k. It
follows from Lemma H.1] that x = ¢ so that

¥ = AT (F — (1 - ao)vg +0°(Ao — 1 ® ao)y"),

which implies that ||| < C([|F[|+[vgll2+ %' l|2,6). We note that [|4)|[x13,5 < |9 [lk+2,6+3|9]]-
Therefore, by defining ¢ by (£I0) we see that ((,,) is the solution to (4.9) satisfying the
desired estimate. Uniqueness of the solution can be shown as in the above calculation under the
restriction 0 < § < . O

In order to prove one of our main result in this paper, that is, Theorem [I.1], it is sufficient to
show an existence of the solution (¢, 1, 1) to (48] together with a uniform bound of the solution
with respect to the small parameter §. To this end, we need to give estimates of remainder terms
(fo, f, fn+1) together with (go, g, gn+1) in (L]). It is not difficult to show the following lemma.

Lemma 6.2. Suppose that F(u) is a polynomial of w such that F(0) = 0. Then, for any
k=2,3,4,... and any J € (0,1] we have

{HF(U)Hk+2,6 < C([lullwllkies + CE, lullkers),
[E (k1 < Clulwllrr + CG; [[ulDlwlllel + CE, [lu]lk—)-

We note again that gyp and gny1 are polynomials in (77(0),77(0),77(’0)), that g is a polynomial in
(77(0),77(0),77(’6)), and that gg,gn1+1 € B® and g € BS°. Moreover, fp and fyi1 are polynomials
in (77(0) 9 UEO) 9 UE/())7 Cv ¢67 11b7 wl)v and .f is a polynomial in (77(0) 9 UEO) ) 772,0/)7 C) 1[)6/7 'ﬁb, 52¢,/)7 whose
coefficients are polynomials in §. Therefore, applying Lemma [6.2] to (fo, f, fv+1) we obtain the
following lemma.

Lemma 6.3. Suppose that i)', { € B>, ¢ € BX°, and 6 € (0,1] satisfy

o

190 1lk+2 + 1€ k+2.s + 1 llhtas < My

for k =2,3,4,.... Then, it holds that fo, fn+1 € B, f € BS°, and that for k = 3,4,5,... we
have

|(fo, fnvs1)llas +6[ Flls < C(Ma),
| (fo, fve)llks2,6 + Ol Fllws1 < C(Mz) My + C(k, My_1).
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Now, we are ready to prove Theorem [[LTI We will construct the solution (¢, 1, %) to (4.8
by the standard iteration arguments. To this end, we introduce a function space

X = {(¢,0,%) € C®°(R) | ¢, € B, 4p € BS®,1hp(0) = 0
(¢, o, )5 < My for k =1,2,3,...},

where

(S %0, )llk.s = 1W0llk+2 + ICHkr26 + I llkrs.s

and the constants My for kK = 1,2,3,... will be defined later. Suppose that (f, 1/30,1,~b) e X.
Then, by Lemma and Proposition [6.1], under the condition 0 < § < §y there exists a unique

solution (¢, g, %) to
(1) = 27)¢ + 2(7 = n(o)) ¥y + (1 — ao) - ¥' = go +~52f07
(6.6) (1 —ag)yy — 6*(Ag —1® ap)yp” + A1p = g+ 6°f,
C+vp=gnt1+ 62 fns1

satisfying ¢, € Bg®, ¢ € B§°, and 10(0) = 0, where fo, f+ fn+1 are given by fo, f, fn+1 with
(¢, o, 1) replaced by (¢, 10,%). Moreover, the solution satisfies

{|||<<,¢o,¢>|||2,5 < O +380(Mo),

(¢, %0, )l 5 < Ok, My—1) + 6C (M2) M

for k = 3,4,5,.... In view of these estimates, we put My = 2C' and define M}, inductively by
= 2C(k,My_1) for k = 3,4,5,.... Then, by taking dp so small that 260C(Mz) < C and

260C'(M3) < 1 we see that ((,19,%) € X. Therefore, if we define a map T : (CN, 1;0,72)) —

(¢, 10,1), then T maps X into itself. Moreover, in exactly the same way as above, we obtain

I, G0, %) = T w0, )l < 30, ) = (%0, )l
1T G0, ) = T 0, ) -
< 3G %0, %) = (¢ 0, )l 5 + C ks MII(C %0, ) — (€ %0, )15
for £k = 3,4,5,.... Therefore, by the contraction mapping principle, the map 7 has a unique

fixed point (¢, 1,%) € X, which is a solution to (48] and satisfies

[Yollks2 + 1ICkr2.6 + [¥llksss < My, for k=2,3,4,...
with a constant M} independent of § € (0,dp]. The proof of Theorem [[T]is complete.

7 Numerical analysis for large amplitude solitary waves

In the previous section, we proved the existence of small amplitude solitary wave solutions to
the Isobe-Kakinuma model (I3). In the present section, we will analyze numerically large
amplitude solitary wave solutions to the model in the special case where the parameters are
chosen as N = 1 and p; = 2. Even in this special case, the Isobe-Kakinuma model gives
a better approximation than the Green—Naghdi equations in the shallow water and strongly
nonlinear regime. Therefore, we will consider the equations

1

(7.1) o+ 1H2¢” + 25—2¢1 =0,
(¢ + H*¢) +n+ = (<Z50 + H?¢h)? + 25 2 H? ¢ =0
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under the boundary conditions at the spatial infinity

(7.2) (@), ¢5(x),¢1(2), ¢1(x) =0 as 2 — +oo

and the symmetry

(7.3) n(—z) =n(z), ¢o(—z)=—¢o(z), ¢1(—2)=—¢1(z),

where H = 1+ n. In this case, the constant v in Theorem [[1lis given by v = % so that we can
put

2
(7.4) c=1+ 352

and regard § as a bifurcation parameter. Moreover, it follows from Proposition 2.2/ that solutions

to (CI)-(7.2) satisfy
2 1 4
(7.5) 0’ = H(go)* = SH ot — LH(91)" + 20 " H ¢1 = 0.

For numerical analysis, it is convenient to rewrite the equations in (7.I]) as a system of
ordinary differential equations of order 1. To this end, we introduce a new unknown function

(7.6) u= ¢y + H* ¢,

which is the horizontal component of the velocity on the water surface. Observe that the first
equation in (7)) and (7.6]) can be rewritten into a system

H $H3 (#4) _ (—en
1 H?)\¢,) \u )’
or equivalently

o\ 1 (—H%*cn+ 1Hu)
(7.7 <¢2>_%< ot s >

Differentiating the first equation in (7.I]) and (7.6)), we obtain
H gH* (¢6) _ [ —(c+u)
1 H? ol o —2H N )’

o) _ L ((—(c+u)H*+FH' )0 — gH>
it 2H3 ((c+u) —2H?¢})n' + Hu' '

Plugging these into the second equation in (Z.I]) yields

or equivalently

(7.8) (=6(c+u)H +2H3¢)) ' — H*u' + 106 2H?¢1 = 0.

On the other hand, we can rewrite the third equation in (ZI]) as

1
cu+n-+ §u2 +2072H?¢? = 0.
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Differentiating this yields
(7.9) (c+u)u + (1446 2He?)n' + 46 2H?¢1¢; = 0.
Now, it follows from (T.7)—(Z.9]) that

;- 6H (cn + Hu) + 10H?(c + u)
T $2{6H(c + )2 — 3(c + u)(en + Hu) — H2(1 +4H¢§)}¢1’
(7.10) , 18(en+ Hu)(2H (¢ +u) — (en + Hu)) + 10H?(1 + 4H¢7)

" ?H{6H(c +u)? — 3(c + u)(cn + Hu) — H2(1 + 4H2)}

3
/
= _(en+ Hu).
|41 = g (en+ Hu)

To summarize, (TI)-(73]) has been transformed equivalently into (ZI0) under the boundary
conditions at the spatial infinity

(7.11) n(x),u(z),p1(z) -0 as z — +oo
and the symmetry

(7.12) n(—z) =n(z), u(-z)=ux), ¢i(-z)=—¢i(z).
Proposition 7.1. Any reqular solution (n,u,$1) to (CI0)-(TII)) satisfies the two identities

1
cu+mn+ §u2 + 2072 H%¢? = 0,

(7.13) 2 2 6 2 4c 03 0

n°— Hu +2u(cn+Hu)—5—H(cn+Hu) +§(5_ H°¢7 = 0.
Proof. The first identity is nothing but the third equation in (7.I]). Plugging (7.7) into (7.3,
we obtain the second one. 0

In order to obtain numerical solutions to (Z.10)—(712)), it is sufficient to determine the initial
data (n(0),u(0), ¢1(0)). It follows from (712 that ¢;(0) = 0, which together with the identities

in (CI3]) implies
1
cu(0) +n(0) + 5u(o)2 =0,

(7.14)
1(0)* — H(0)u(0)* + 2u(0) (en(0) + H(0)u(0))

(en(0) + H(0)u(0))* = 0,

6
~ 5H(0)

where H(0) = 1+ n(0) and c is given by ([C.4]). Particularly, by eliminating 7(0) from these two
identities we obtain

(7.15)  Tu(0)* 4 42cu(0)® 4+ 6(13c* — 3)u(0)? 4 8¢(13¢* — 8)u(0) + 8(6¢* — 1)(c* — 1) = 0.

This is a quartic equation in u(0) so that for each given ¢ we have four roots. Generally, two of
them are complex numbers and one real root does not give the correct initial data for the solitary
wave solution, so that we can determine the initial data (1(0),u(0),¢1(0)) for appropriately
chosen §.

We proceed to compare solitary wave solutions to the Isobe-Kakinuma model (7.1)—(7.4)
calculated numerically as above with the classical solitons of the Korteweg—de Vries equation

4
(7.16) NKav(z) = gdzsech%,
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which is the first approximation for small amplitude solitary wave solutions to the Isobe—
Kakinuma model as was guaranteed by Theorem [Tl In Figure [[Il we plot the surface profile
n(z) of the solitary wave solutions to the Isobe-Kakinuma model (7.1I]) and the soliton ngqv(x)
of the Korteweg—de Vries equation given by (710 for several values of 5. We observe that for
small 0 the error || — nkqv| L is small as expected. As ¢ increases, the error cannot be negli-
gible anymore and the wave height of the solitary wave to the Isobe-Kakinuma model becomes
larger than that of the classical soliton. We can catch numerically the solitary wave solutions to
the Isobe-Kakinuma model for § up to some critical value d.. For § beyond this critical value J.,
the quartic equation (7.I5]) does not have any real root so that the solitary wave solution might
not exist. This suggests that there exists a maximum height of the solitary wave solutions to
the Isobe-Kakinuma model as in the case of the full water wave problem.

(a) ’ (b) ’ ()

Figure 7.1: Surface profiles of the solitary wave solutions to the Isobe-Kakinuma model (solid
line) and the Korteweg—de Vries equation (dashed line) for several values of 0: (a) § = 0.3, (b)
§ =045, (c) 5 = 0.55, (d) § = 0.6, (e) § = 0.62, (f) § = 0.62633493.

In Figures and [.3] we plot also the surface profiles of the solitary wave solutions to the
Isobe-Kakinuma model for several values of ¢ in the same figures. We observe that the wave
height is monotonically increasing as § increases and that a sharp crest is formed as d approaches
the critical value 6.. We will analyze more precisely this formation of a sharp crest. To this end,
we calculate numerically the curvature k at the crest of the surface profile, which is defined by

" (z) .
(1+ (1 (2))?)?

k(z) =

We also introduce a function d(z) by
(7.17) d=6H(c+u)?—3(c+u)(en+ Hu) — H*(1 4+ 4H¢?),

where H = 1+ n and c is given by ((C4). This function appears in the denominator of the
right-hand side of the ordinary differential equations for n and u in (ZI0). In Table [[.T] we list
the wave height, the curvature at the crest, and the value of the denominator d at the crest of
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Figure 7.3: Surface profiles near the crests
of the solitary wave solutions to the Isobe—
Kakinuma model for 6 = 0.6, 0.62, 0.625, 0.626,
0.62633493.

Figure 7.2: Surface profiles of the solitary
wave solutions to the Isobe-Kakinuma model
for § = 0.45, 0.55, 0.6, 0.62, 0.62633493.

the solitary wave solutions to the Isobe-Kakinuma model for several values of §. We observe
that as 0 approaches some critical value J., the wave height converges toward a maximum wave
height 7.(0), the curvature at the crest is blowing up, and the denominator at the crest is going
to vanish. This consideration suggests strongly the existence of solitary wave of extreme form
as well as a sharp crest to the Isobe-Kakinuma model and that the critical value §. would be
obtained by the equation d(0) = 0, that is,

(7.18) 6H(0)(c+ u(0))” = 3(c + u(0)) (en(0) + H(0)u(0)) — H(0)*> =0,

where H(0) = 1 4+ n(0) and c is given by (Z4). In fact, we can calculate this critical value J,
the maximum wave height 7.(0), the horizontal velocity u.(0) of the water at the crest, and the
critical phase speed c. by solving nonlinear algebraic equations (T.I5]) and (T.I8]) together with
([74]). Those values are approximately given by

(7.19) 5. = 0.62633493, 10(0) = 0.687926, u.(0) = —0.797196, ¢, = 1.26153.

In Figures [T.4] and [.5] we plot the surface and horizontal velocity profiles of the solitary wave
of extreme form to the Isobe-Kakinuma model. It follows from (ZI9)) that c.+ u.(0) > 0, which
means that the crest of the solitary wave of extreme form is not the stagnation point unlike the
full water wave problem.

We proceed to calculate the angle of the crest of the solitary wave of extreme form. To this
end, it is sufficient to evaluate 7,(+0), where (7., u¢, ¢1¢) is the solution to the Isobe-Kakinuma
model (7I0]) in the critical case 6 = §.. We denote by d. the corresponding denominator defined
by ([I7) so that by the first equation in (Z.I0) we have

,_ 2H.(8H v. — 3¢) %

2
(7 0) "70 53 dc Y

where H. = 1+ 7. and
Ve = Ce + Ue.

It follows from the third equation in (ZI0) that

3
2H,(0)3

(7.21) $1.(0) = (He(0)ve(0) — cc).
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J n(0) —r(0) d(0)

0.6 0.581258 2.34087 1.55722

0.62 0.645485 4.85676 7.30167x 107!
0.625 0.670918 1.04536x 10 3.23799x 107!
0.626 0.679938 2.0651 x10 1.59473x 1071
0.6263 0.685463 6.3354 %10 5.08746x 1072
0.62633 0.687014 1.68098x 102 1.90423x 1072
0.626334 0.687532 3.8648 %102 8.26255x 1073
0.6263349 0.687855 2.12563x 103 1.5 x1073
0.62633493 0.687915 1.384 x10* 2.30314x10~*

Table 7.1: List of the wave height, the curvature at the crest, and the value of the denominator
d at the crest of the solitary wave solutions to the Isobe-Kakinuma model.

0.8

-4

Figure 7.5: Horizontal velocity profile of the
solitary wave of extreme form to the Isobe-
Kakinuma model.

Figure 7.4: Surface profile of the solitary
wave of extreme form to the Isobe-Kakinuma
model.

Differentiating (7.17) and using ¢1.(0) = 0, we have
d(£0) = (3v6(0)* — 2H,(0))7L(£0) + 3(2H.(0)vc(0) + c.)ul(£0).
It follows from ([Z.9) in the critical case § = §. that
ve(0)ug(£0) + 17,(£0) = 0,

so that

(7.22) d.(+0) = (31)0(0)2 —8H,.(0) + 366 ) nL(20).

By (C.21)), (7.22), and 'Hopital’s rule, we obtain

i ¢1C(x) — (bllc(x)
o—£0 do(z)  z—=20 d.(z)
30.(0) (He(0)ve(0) — cc) 1

~ 2H,(0)?(30:(0)® — 8H.(0)v(0) — 3¢ 7L(£0)”
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Therefore, passing to the limit 2 — +0 in (7.20) yields

(7.23) M(£0) = F \/3%(0) (He(0)ve(0) = cc) (8He(0)ve(0) — 3c)

02H(0)%(3ve(0)* — 8H(0)v(0) —3cc)

which gives the angle of the crest.

Here, note that we have rewritten all physical quantities in a nondimensional form. In order
to calculate the angle of the crest in the physical space, we have to work with dimensional
variables. Let z* and n* be the horizontal spatial coordinate and the surface elevation in the
physical space, respectively, so that we have x* = Ax and n* = hn, where h is the mean depth of
the water and A the typical wavelength. The angle of the crest in the physical space should be
calculated from 73’ (40). In view of the relation n*(x*) = hn(A~tz*), we have n*'(z*) = dn/(x)
so that n*'(£0) = 6.1.(30), that is,

Cc

o B 30¢(0) (Hc(0)ve(0) — ¢.) (8H,(0)ve(0) — 3c)
e (£0) = jF\/ H,(0)2(30(0)3 — 8H,(0)v(0) — 3¢,)

= 0.24397.

Now, the included angle 6 of the shape crest in the physical space is approximately given by
0 = 152.6°, which is larger than the included angle 120° of the sharp crest of the solitary wave
solution of extreme form to the full water wave problem.
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