Large time behavior of nonlinear finite volume schemes for convection-diffusion equations - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2020

Large time behavior of nonlinear finite volume schemes for convection-diffusion equations

Résumé

In this contribution we analyze the large time behavior of a family of nonlinear finite volume schemes for anisotropic convection-diffusion equations set in a bounded bidimensional domain and endowed with either Dirichlet and / or no-flux boundary conditions. We show that solutions to the two-point flux approximation (TPFA) and discrete duality finite volume (DDFV) schemes under consideration converge exponentially fast toward their steady state. The analysis relies on discrete entropy estimates and discrete functional inequalities. As a biproduct of our analysis, we establish new discrete Poincaré-Wirtinger, Beckner and logarithmic Sobolev inequalities. Our theoretical results are illustrated by numerical simulations.
Fichier principal
Vignette du fichier
paper.pdf (812.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02360155 , version 1 (12-11-2019)
hal-02360155 , version 2 (09-06-2020)

Identifiants

Citer

Clément Cancès, Claire Chainais-Hillairet, Maxime Herda, Stella Krell. Large time behavior of nonlinear finite volume schemes for convection-diffusion equations. SIAM Journal on Numerical Analysis, 2020, 58 (5), pp.2544-2571. ⟨10.1137/19M1299311⟩. ⟨hal-02360155v2⟩
231 Consultations
222 Téléchargements

Altmetric

Partager

More