Monte Carlo Study of Rubber Elasticity on the Basis of Finsler Geometry Modeling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Symmetry Année : 2019

Monte Carlo Study of Rubber Elasticity on the Basis of Finsler Geometry Modeling

Hiroshi Koibuchi
Jean-Marc Chenal
Gildas Diguet
Gaël Sebald
Jean-Yves Cavaille

Résumé

Configurations of the polymer state in rubbers, such as so-called isotropic (random) and anisotropic (almost aligned) states, are symmetric/asymmetric under space rotations. In this paper, we present numerical data obtained by Monte Carlo simulations of a model for rubber formulations to compare these predictions with the reported experimental stress–strain curves. The model is defined by extending the two-dimensional surface model of Helfrich–Polyakov based on the Finsler geometry description. In the Finsler geometry model, the directional degree of freedom σ⃗ of the polymers and the polymer position r are assumed to be the dynamical variables, and these two variables play an important role in the modeling of rubber elasticity. We find that the simulated stresses τsim are in good agreement with the reported experimental stresses τexp for large strains of up to 1200% . It should be emphasized that the stress–strain curves are directly calculated from the Finsler geometry model Hamiltonian and its partition function, and this technique is in sharp contrast to the standard technique in which affine deformation is assumed. It is also shown that the obtained results are qualitatively consistent with the experimental data as influenced by strain-induced crystallization and the presence of fillers, though the real strain-induced crystallization is a time-dependent phenomenon in general
Fichier principal
Vignette du fichier
symmetry-11-01124-v2_koibuchi.pdf (1.5 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02357987 , version 1 (28-03-2022)

Identifiants

Citer

Hiroshi Koibuchi, Chrystelle Bernard, Jean-Marc Chenal, Gildas Diguet, Gaël Sebald, et al.. Monte Carlo Study of Rubber Elasticity on the Basis of Finsler Geometry Modeling. Symmetry, 2019, 11 (9), pp.1124. ⟨10.3390/sym11091124⟩. ⟨hal-02357987⟩
38 Consultations
15 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More