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Abstract: Configurations of the polymer state in rubbers, such as so-called isotropic (random) and
anisotropic (almost aligned) states, are symmetric/asymmetric under space rotations. In this paper,
we present numerical data obtained by Monte Carlo simulations of a model for rubber formulations to
compare these predictions with the reported experimental stress–strain curves. The model is defined
by extending the two-dimensional surface model of Helfrich–Polyakov based on the Finsler geometry
description. In the Finsler geometry model, the directional degree of freedom ~σ of the polymers
and the polymer position r are assumed to be the dynamical variables, and these two variables play
an important role in the modeling of rubber elasticity. We find that the simulated stresses τsim are
in good agreement with the reported experimental stresses τexp for large strains of up to 1200%.
It should be emphasized that the stress–strain curves are directly calculated from the Finsler geometry
model Hamiltonian and its partition function, and this technique is in sharp contrast to the standard
technique in which affine deformation is assumed. It is also shown that the obtained results are
qualitatively consistent with the experimental data as influenced by strain-induced crystallization and
the presence of fillers, though the real strain-induced crystallization is a time-dependent phenomenon
in general.

Keywords: rubber elasticity; mathematical modeling; Finsler geometry; strain induced crystallization;
Monte Carlo; stress strain curves; statistical mechanics

1. Introduction

Rubbers such as natural rubber are well known to support large recoverable strains in the elastic
deformation process of stretching/recovery (Figure 1a,b). An important characteristic of natural rubber
is that it crystallizes during the stretching process, which is called strain-induced crystallization [1–4].
This strain-induced crystallization slows down crack propagation and therefore improves the natural
rubber tearing properties. Other than the strain-induced crystallization, so-called fillers also play
an important role in determining the mechanical properties and inducing hysteresis behavior in the
stress–strain curve.
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Figure 1. (a) scheme of the stress–strain curves usually obtained with a natural rubber from its tensile
loading and unloading; (b) scheme of the concomitant evolution of the strain-induced crystallization.

The stress–strain curve of rubbers is generally highly nonlinear and has a plateau-like structure
in the intermediate strain region. One of the well-studied theories describing such a stress–strain
curve is so-called affine network theory [5–10]. In this theory, the basic assumption is that the
probability distribution of the polymer length follows a Gaussian distribution. In addition, the affine
transformation is simply assumed in this theory for polymer elongation using the deformation
tensor. In this framework, the free energy of the network is obtained, and the stress–strain curve
becomes calculable [11–16]. In addition to this basic theory, many variations have been proposed,
and, consequently, the stress–strain curves are well understood [17–20]. Other than the properties of
the extended and highly nonlinear behavior of the stress–strain curves, it is also well known that the
temperature of rubbers increases in the adiabatic extension process. This property characteristic of
rubbers is called entropy elasticity, which is reflected in the stress being proportional to the temperature.
This aspect is also well represented in the Gaussian chain model for polymers [5–8].

However, the above-mentioned Gaussian distribution is established only in a freely joined
polymer chain by the central limit theorem, where neither the effect of entanglement nor many-body
interaction is implemented. Moreover, the network theories are constructed under the assumption
of the aforementioned affine deformation for all distances. This assumption is equivalent to the fact
that rubbers are considered an ideal network with no microscopic interaction between segments [21].
As a consequence, rubbers are, in some sense, considered a continuum elastic material, in which
there is no difference between the microscopic and macroscopic strains (Figure 2a). The problem is
that it is still unclear why the assumption of affine deformation is satisfied or reasonable. In fact,
it is well known and accepted that rubbers are crosslinked and not always uniform, and, moreover,
strain-induced crystallization clearly makes the mechanical properties anisotropic (Figure 2b). It is
also experimentally well known that entropy elasticity has a dominant contribution to the elasticity;
however, the microscopic origin of this entropy elasticity is still quantitatively unclear. Thus, despite
the fact that the study of rubber elasticity has a long history, the understanding of its basic properties is
still unsatisfactory.
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Figure 2. (a) illustrations of affine deformation in a continuum material, in which the microscopic
strains `′/` are exactly the same as the macroscopic strain L′/L; (b) illustrations of the microscopic
internal structure of rubbers without strain (upper) and with strain (lower). In the dashed circle (upper),
the polymer directions are almost random or isotropic, while in the dashed ellipse (lower), the polymers
align along the strain direction and partly crystallize (strain-induced crystallization). The ”polymer
directions” are used in a coarse-grained manner representing the directions of the polymer segments.

Therefore, it is interesting to study rubbers using mathematical theory without assuming
affine deformation. For this purpose, we consider the Finsler geometry model to be a suitable
technique [22] because the Finsler geometry model allows us to avoid complicated interactions and
find another route, which is physically/mathematically transparent, to obtain the same results. Indeed,
the above-mentioned plateau-like structure in the stress–strain curve can be reproduced by the Finsler
geometry modeling technique in the case of a liquid crystal elastomer [23] and the J-shaped stress–strain
curve of soft biological materials [24,25]. In this paper, we show that experimentally observed and
reported that stress–strain curves of rubbers are reproducible by the Finsler geometry modeling
technique without the affine deformation assumption [26]. Moreover, it is also shown that the stress
formula is consistent with the entropy elasticity, in which the stress is proportional to the temperature.

In the Finsler geometry model, the internal directional degree of freedom ~σ is assumed to define
the Finsler length inside the material. The Finsler length is not a real distance but is used to define
the interaction energy, such as the Gaussian bond potential, which consequently becomes anisotropic.
In the case of liquid crystal elastomer, the director field is assigned to ~σ and is assumed to have
a nonpolar interaction governed by the so-called Lebwohl–Lasher potential [27]. For soft biological
materials such as skin and arteries, the variable ~σ corresponds to the direction of the collagen fibers and
also exhibits nonpolar interaction [24,25]. By considering the role of ~σ in these materials, it is natural to
assume that the direction of the polymer chains corresponds to ~σ in the Finsler geometry model for
rubbers, and the interaction between the variables ~σ is assumed to be the Lebwohl–Lasher potential.

This paper is organized as follows: in Section 2, we present the Hamiltonians of the
three-dimensional (3D) and two-dimensional (2D) Finsler geometry models, the Monte Carlo technique,
and the calculation formula for the frame tension. Readers who are not interested in these technical
details can skip Section 2 and go to Section 3, where the Monte Carlo results, reported experimental data,
and snapshots are presented. Finally, in Section 4, we summarize the results. In Appendices A and B,
the detailed information of the discrete expressions of the tensile energies of the 2D and 3D models is
described. The expression of the 2D bending energy is also described in Appendix B.

2. Models and Simulation Technique

2.1. Lattices and the Monte Carlo Technique

First of all, we emphasize that our model is a statistical mechanical one, and, hence, it is applicable
to equilibrium properties of materials. For this reason, only stress–strain data observed in sufficiently
long time measurements are targeted in this paper.
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The Hamiltonians, which are introduced in the following subsections, are discretized on 3D and
2D lattices, which are composed of tetrahedrons (Figure 3a) and triangles (Figure 3b), respectively [25].
The cylinder in Figure 3a is a “thick” surface, which is composed of tetrahedrons, while the 2D cylinder
in Figure 3b is a “real” surface. The ”thick” surface is a 3D lattice constructed by 3D tetrahedrons;
however, the thickness is very small compared to the diameter or the height of the cylinder. In this
sense, we call this 3D lattice a “thick” surface. The size of the 3D lattice in Figure 3a is given by
(N, NB, NT, Ntet)=(2226, 10812, 14946, 6360), where N, NB, NT, and Ntet are the total number of vertices,
bonds, triangles, and tetrahedrons, respectively. The topological constraint N−NB+NT−Ntet=0, which
is the Euler number, can be used to check whether the discretization is accurate or not. The size of the
2D lattice in Figure 3b is given by (N, NB, NT)=(1134, 3294, 2162), where N, NB, and NT are the same
as above. The Euler number for a 2D cylindrical lattice is given by N−NB+NT =2, which is satisfied
for the cylinder in Figure 3b. We use relatively small lattices in Figure 3a,b so that the lattice structure
is clearly visible, and these lattices are considerably smaller than those used for the simulations.

The reason why we use such cylindrical lattices is that the cylindrical surface is suitable for a frame
tension formula [28–30]. The frame tension is calculated on the surfaces spanning a fixed frame, which
we call the boundary frame. For the calculation of the frame tension, it is better to remove a couple of
unnecessary boundaries from the square boundary, as in Figure 3c. The calculation technique for the
frame tension is presented in the separate subsection.(a)      (b) (c)            ��

��

�
�

Figure 3. (a) a thick cylinder discretized by tetrahedrons for the 3D model; (b) a cylindrical surface
discretized by triangles for the 2D model; (c) illustration for the construction of a cylindrical surface
from a rectangular surface by removing a pair of boundaries. The cylinder is stretched in the height
(or H) direction, whereas the surfaces in Figure 2a,b are stretched in the horizontal direction.

The 2D cylinder is constructed as follows: let a be the edge length of the regular triangle,
and let (L1, L2) be the total number of divisions along the horizontal (L1) and vertical (L2) directions
of the plate in Figure 3c; then, the height H and the diameter D of the cylinder are given by
(H, D) = (L1a/π, L2a

√
3/2). In this paper, we use lattices of H = D; then, we have L1 =

√
3L2π/2,

and, therefore, H(=D) is given by a single integer L(=L2) such that

H = D = (
√

3/2)La. (1)

For the 2D lattice in Figure 3b, we fix L to L=20. The lattice spacing a is fixed to a=1 henceforth [31],
and a is used later when the results are compared with the experimental data.

The 3D thick cylinder shown in Figure 3a is also generated to satisfy H=D by the Netgen Mesh
Generator [32]. In this thick cylinder, the thickness is negligible compared to D, and, hence, the internal
diameter and external diameter are simply expressed by D. We should note that there is no internal
vertex between these outer and inner surfaces of the 3D lattice in Figure 3a, and the 3D lattice for the
simulations also has vertices only on the outer and inner surfaces.

The calculation technique of the tensile stress, which is described later in detail, is based on the
formula for the surface or frame tension. The frame tension is initially defined on two-dimensional
surfaces. This is the reason why the 2D lattice is used to calculate the stress–strain curves. Moreover,
as mentioned above, the 3D lattice is a thick cylinder and is considered to be a surface. Indeed,
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the frame tension formula, which is always applied in two-dimensional cases, is applied to the results
obtained by the 3D lattice simulations.

2.2. 3D Model

The thick cylinder, such as the one in Figure 3a, is composed of tetrahedrons; therefore, a 3D model
is necessary to use these thick cylinders. The continuous expression of the tensile energy function is
given by a linear combination of the Gaussian bond potential S1 and its simple quadratic extension S2

such that

S = bS1 + cS2,

S1 =

∫
√

gd3xgab ∂r
∂xa ·

∂r
∂xb

,

S2 =

∫
√

gd3x
(
gab ∂r
∂xa ·

∂r
∂xb

)2

,

(2)

where r is a three-dimensional vector r = (X, Y, Z)(∈ R3) and the elements X, Y, Z are functions of
(x1, x2, x3). Thus, the vector r represents the material position (Figure 4a), and this position vector r is
also considered to be a mapping from a three-dimensional parameter space M to the three-dimensional
Euclidean space R3 such that r : M 3 (x1, x2, x3) 7→

(
X(x1, x2, x3), Y(x1, x2, x3), Z(x1, x2, x3)

)
∈ R3.

The 3× 3 matrix gab is the inverse of a metric tensor gab on M, and g(= det gab) is its determinant. Since
the coefficient b is called the microscopic surface tension in the case in which M is a two-dimensional
space, we call these b and c parameters tension coefficients.

(a)                      (b) (c) 

� �
�

�

�

�⃗�

�⃗��

��
��⃗

Figure 4. (a) a part of the 3D material with the position vector r in R3; (b) a tetrahedron of vertices
1, 2, 3 and 4, where the three thin arrows denote the local coordinate axes, and (c) directions of the
polymer represented by the variables ±~σ. The term ±~σ represents a mean value of directions of several
polymer segments at the vertex (or crosslinker) position. The material, a part of which is shown in (a),
is discretized by tetrahedrons in (b) to define the discrete Hamiltonian, and these tetrahedrons form
a 3D thick cylinder in Figure 3b. The dashed line connecting two vertices in (c) corresponds to an edge
of a tetrahedron in (b). The Finsler length v12 in Equation (4) along the edge 12 is defined by using the
variable ~σ1 and the unit tangential vector t12 in (b).

Before discussing the discretization of S1 and S2, we have to introduce the discrete Finsler metric

gab =


1/v2

12 0 0
0 1/v2

13 0
0 0 1/v2

14

 , (3)

where vi j is the Finsler length [22,33–36] given by

vi j =
√

1− |ti j · ~σi|2 + v0, ti j = ~̀i j/`i j, ~̀i j = r j − ri. (4)

Note that vi j is different from vi j = |ti j · ~σi|+v0 used in Ref. [23]. The symbol ti j is a unit tangential
vector along the edge or bond i j (see Figure 4b), and the variable ~σi(∈ S2 : unit sphere) represents
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the direction of the polymer [37] (Figure 4c). The polymer directions are also coarse-grained by ~σi.
The parameter v0 is introduced as a cutoff to avoid the divergence of the elements of gab and is fixed to
v0=0.001 in this paper. This value is sufficiently small, and, therefore, the final results are independent
of the small variation of v0 around v0=0.001.

The discretization of these continuous functions S1 and S2 is described in Appendix A. By including
several additional terms, the final form of the discrete Hamiltonian is given by

S(r,~σ) = λS0(~σ) + bS1(r,~σ) + cS2(r,~σ) + κS3(r) + U3D(r) + UB, (5)

where

S0(~σ) =
1
2

∑
i j

(
1− 3(~σi · ~σ j)

2
)

, S1 =
∑

i j

Γi j`
2
i j, Γi j =

1
N̄

∑
tet

γi j(tet),

S2(~σ) =
∑

i j

Γ(1)
i j `

4
i j +

∑
i j,kl

Γ(2)
i j,kl`

2
i j`

2
kl, S3(r) =

∑
i

[1− cos(φi −π/3)] ,
(6)

and

U3D(r) =
∑
tet

U3D(tet), U3D(tet) =
{

0 (Vol(tet) > 0)
∞ (otherwise)

,

UB =
∑

i∈boundary

UB(ri), UB(ri) =

{
∞ (|zi −H| > δB or |zi| > δB)

0 (otherwise)
.

(7)

The first term λS0 with the interaction coefficient λ represents the interaction between ~σi and ~σ j, where
i j denote the vertices connected by a bond. This S0 is exactly the same as the Lebwohl–Lasher potential
for liquid crystal molecules [27]. This term plays an important role in the Finsler geometry model
because the variable ~σ in Equation (4) is used to define vi j and hence the elements of the Finsler metric
in Equation (3). In the expression of S1, the coefficient N̄ is defined by

N̄ = (1/NB)
∑

i j

ni j, (8)

where NB is the total number of bonds and ni j is the total number of tetrahedrons sharing the bond
i j. Note that bΓi j plays a role in the effective tension, in which the expression for the symbol γi j is

given in Appendix A. The symbols Γ(1)
i j and Γ(2)

i j,kl in S2 are also given in Appendix A, and cΓ(1)
i j and

cΓ(2)
i j,kl can also be understood as effective tensions corresponding to the quadratic terms of `4

i j and `2
i j`

2
kl,

respectively.
The fourth term κS3 is an energy for deformation of the tetrahedrons except simple

swelling/shrinking, for which this term remains unchanged. In this expression of S3, the symbol
φi is an internal angle such as the one shown in Figure 4b, and

∑
i denotes the sum of all internal

angles of the triangles. We call κ the bending rigidity because this term S3 is considered to be
an energy term corresponding to the bending energy in the 2D model, which is also described in the
following subsection.

The fifth term U3D is a constraint potential such that the volume should not be negative for all
tetrahedrons. The boundary vertices are allowed to fluctuate along the boundary circles of fixed
diameter D0 (Figure 5a), though this constraint is not written in the form of a mathematical expression.
The final term UB is introduced for the boundary vertices. In this UB, the symbol δB denotes a small
distance above and below the boundary position (Figure 5b). Inside this gap 2δB, the boundary vertices
are allowed to fluctuate not only along the boundary circle but also in the vertical direction. The small
number δB is given by the mean bond length of the initial lattice such that δB= 〈`〉, and therefore δB
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is negligible compared to H for sufficiently large N. The reason why this δB is introduced for the
boundary vertices is that the variable ~σi at the boundary cannot be parallel to the boundary if the
boundary circle is on a plane perpendicular to the z direction because vi j in Equation (4) makes 1/vi j
very large in this case. (a)      (b) 2��

�

��

�

Figure 5. (a) an illustration of the 2D cylindrical surface of fixed height H and diameter D0 of the
boundaries, where the vertices are allowed to fluctuate along the boundary circles; (b) the boundary
vertices are also allowed to fluctuate into the height direction within the distance ±δB from the position
fixed by H.

To summarize the role of the parameters λ, b, c and κ intuitively, the first λ is a coefficient of
the Lebwohl–Lasher potential, and, hence, this λ controls or reflects the alignment strength of the
polymer directions just as in the case of liquid crystals. The coefficients b and c also control/reflect
the strength of the response to external tensile forces, and, therefore, these can be called "tension
coefficients", as mentioned above. The parameter κ controls/reflects the resistance to external forces
that deform the tetrahedron shape. This deformation includes that expected under the uniaxial tensile
force, and therefore κ shares the same role with b and c in part.

The partition function is defined by

Z3D(λ, b, c,κ; H) =
∑
~σ

∫ 2N1∏
i=1

dri

N−2N1∏
i=1

dri exp
[
−

1
kBT

S(~σ, r)
]

, (kBT = 1), (9)

where N1 is the total number of boundary vertices on one of the two boundaries. The integrations∫ ∏2N1
i=1 dri and

∫ ∏N−2N1
i=1 dri are one-dimensional and three-dimensional multiple integrations for the

boundary vertices and the vertices inside the boundaries, respectively. In the simulations, the coefficient
kBT in Equation (9) is fixed to kBT = 1, where kB is the Boltzmann constant and T is the absolute
temperature. In this simulation unit, the parameters λ, b, c, and κ have values in the unit of kBT.
The explicit relation between this simulation unit and the physical unit is necessary for the calculation
of the frame tension and will be described below.

2.3. 2D Model

In this subsection, we introduce a 2D model, which is also similar to the 2D model for soft
biological materials in Refs. [38–45]. The 2D surface model is an extension of the Doi–Edwards model
for a 1D polymer [46], and, therefore, the 2D Finsler geometry model as well as the 3D Finsler geometry
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model is considered an extension of this 1D polymer model. The continuous form of the Hamiltonian
is given by

S = bS1 + cS2 + κS3,

S1 =

∫
√

gd2xgab ∂r
∂xa ·

∂r
∂xb

, S2 =

∫
√

gd2x
(
gab ∂r
∂xa ·

∂r
∂xb

)2

,

S3 =
1
2

∫
√

gd2xgab ∂n
∂xa ·

∂n
∂xb

.

(10)

The first and second terms S1 and S2, respectively, are identical to those in the 3D model in Equation (2)
except that the parameter space M is a two-dimensional surface in this 2D model. The symbol r is now
considered to be a mapping from the two-dimensional space M to R3. As a consequence, the integration
changes to the two-dimensional case

∫ √
gd2x, and the metric tensor gab also changes to a 2× 2 matrix

(Figure 6a). The third term S3 is the standard bending energy for surface models, where n is a unit
normal vector of the surface [38–45].

Note that this 2D model has no conformal invariance because the following condition is not
always satisfied: S3 is invariant under the conformal transformation gab(x)→ g′ab(x) = f (x)gab(x) for
any positive function f (x) [47]. Equivalently, it is clear that there exists a positive function f (x) such
that S3(gab(x)) , S3(g′ab(x)) with g′ab(x)= f (x)gab(x).

(a)                                  (b) 

�

�� �⃗�
�⃗���

Figure 6. (a) a part of the smooth 2D cylindrical surface in R3; this smooth surface is discretized
by triangles; (b) a tangential plane at the vertex i, which is defined by the unit normal vector Ni.
The parallel component ~σ||i of ~σi is used to define the energy S0 of the 2D model.

The discrete Hamiltonian is given by

S(~σ, r) = λS0 + bS1 + cS2 + κS3 + UB,

S0(~σ) = − (3/2)
∑

i j

(
~σ||i · ~σ

||

j

)2
,

S1 =
∑

i j

γi j`
2
i j, S2 =

∑
i j

Γ(1)
i j `

4
i j +

∑
i j,kl

Γ(2)
i j,kl`

2
i j`

2
kl,

S3 =
∑

i j

κi j
(
1− ni · n j

)
,

(11)

which are now defined on the triangles. In the first term S0, the symbol ~σ||i is defined by

~σ||i = ~σi − (~σi ·Ni)Ni, (12)

where Ni is a unit normal vector of the tangential plane at the vertex i (Figure 6b). The vector Ni is
defined by

Ni =

∑
j(i) A j(i)n j(i)∣∣∣∑ j(i) A j(i)n j(i)

∣∣∣ , (13)
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where A j(i) and n j(i) denote the area and the unit normal vector of the triangle j(i) sharing the vertex

i, respectively. The parameter ~σ||i is the tangential component of ~σi and has values “inside” the unit
sphere S2 in contrast to the original ~σ, which is on S2.

The information on the symbols γi j, Γ(1)
i j and Γ(2)

i j,kl in S1 and S2 is given in Appendix B. The symbols
κi j in S3 are also defined in Appendix B. The roles of parametersλ, b, c and κ are exactly the same as those
in the 3D model except that κ in this 2D model represents the resistance to pure bending deformation.

2.4. Formula for the Frame Tension

In this subsection, we present the formula for the calculation of the frame tension τ [28]. The frame
tension τ is calculated from the scale invariant property of the partition function Z({r}), where {r}
denotes the integration variables, which is simply expressed by r henceforth [48]. Since Z is independent
of the integration variables, we have Z(αr)=Z(r) for any scale parameter α(> 0) [28]. It follows from
this relation that

∂ log Z(αr)
∂α

∣∣∣∣∣∣
α=1

= 0. (14)

By applying the scale change r→ αr to the Hamiltonians of both the 2D and 3D models, we have
S1(αr) = α2S1(r) and S2(αr) = α4S2(r). All other terms in the Hamiltonian S remain unchanged
under this scale transformation. The integrations in Z are changed to

∫ ∏2N1
i=1 d(αri)

∏N−2N1
i=1 d(αri) =

α2N1+3(N−2N1)
∫ ∏2N1

i=1 dri
∏N−2N1

i=1 dri.
Here, we note that the height H of the 3D and 2D cylinders is fixed. As a result of this constraint,

the projected area Ap of the frame is fixed such that

Ap = πD0H, (15)

where D0 is the initial diameter of the cylinders. This Ap depends only on H and is independent of the
diameter D of the cylinders, where D is not always identical to D0 because D fluctuates in general due
to surface fluctuations. This Ap originally comes from the area of the square boundary shown in the
upper part of Figure 3c.

The important point to note here is that the integrations in Z are performed under the fixed
Ap. This constraint is expressed in the scaled partition function such that Z(αr, Ap(α)), where Ap(α)
denotes that Ap is implicitly dependent on α, and this dependence is described by Ap(α) = α−2Ap.
Thus, replacing Z(αr) in Equation (14) by Z(αr, Ap(α)), we have

(3N − 4N1) − 2b〈S1〉 − 4c〈S2〉+
∂ log Z
∂Ap

∂Ap

∂α

∣∣∣∣∣∣
α=1

= 0. (16)

To evaluate the final term, we assume that the free energy F(Ap) for the surface with the projected area
Ap satisfies

F = τ

∫ Ap

A0

dA, Z = exp (−F) . (17)

This is the definition of the macroscopic surface (or frame) tension τ. From this Z, the final term of
Equation (16) is identified with 2τAp. Thus, we have

τ =
2b〈S1〉+ 4c〈S2〉 − (3N − 4N1)

2Ap
. (18)
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This is the formula for the calculation of the frame tension. From this formula, we also understand that
the macroscopic quantity 2Apτ corresponds to the microscopically defined quantity 2b〈S1〉+ 4c〈S2〉 −

(3N − 4N1), which is given by a linear combination of the simulation data 〈S1〉 and 〈S2〉.
We emphasize that τ should not be understood as a nominal stress because the frame tension τ in

Equation (18) is a notion for two-dimensional surfaces and is calculated by fixing the frame over which
the surface extends. There is no difference between the ”nominal” and ”true” tensions in τ because the
frame tension is a notion for surfaces. The only constraint for the frame tension is whether the surface
actually extends over the boundary frame or not. If the surface collapses and becomes a string-like
object such as a surface that undergoes a necking phenomenon [26], the string-like object no longer
spans the boundary frame, and, in this case, the free energy of such an object is clearly different from F
in Equation (17). The frame tension can be defined only when the surface retains its two-dimensional
structure. Therefore, we check whether the surfaces span the boundary frame or not by visualizing
them as snapshots.

Here, we should note that the equilibrium extension process of the surface is qualitatively
consistent with a prediction of the thermodynamics of rubbers, which are considered to comprise
a set of chains with freely rotating links forming a three-dimensional network [5–8]. Let S and U
be the entropy and internal energy of rubber, respectively, which is expanded from L to L+dL by
an external force f . Since the volume change is negligible, we have TdS=dU− f dL from the energy
conservation law. From this expression, we have f =(∂U/∂L)−T(∂S/∂L). The problem is whether
the conditions (∂U/∂L) > 0 and (∂S/∂L) < 0 are consistent with the Finsler geometry model or not.
If one of these two is violated, then f can be negative. Thus, it is meaningful to check these conditions.
First, the direction of ~σ in the Finsler geometry model is controlled not only by the coefficient λ of
S0 in Equation (6) or Equation (11) but also by mechanical elongation or stresses. Let us assume
λ=0. If the surface of the model is expanded by the external force f , the configuration of ~σ changes
from disordered states to ordered states and aligns along the direction of f if λ is sufficiently small,
including the case λ=0. Thus, the entropy is expected to be decreased, and (∂S/∂L) < 0 is expected.
Moreover, the energy λS0 remains zero because λ=0 even when S0 decreases by the change of ~σ from
disordered to ordered. As a consequence, the internal energy U corresponding to λS0+bS1+cS2+κS3

is increased for the extension process of rubbers because S1, S2 and S3 increase when the surface height
H is increased. Therefore, from this increase in internal energy, we expect that (∂U/∂L) > 0.

2.5. Physical Unit of the Frame Tension

In this subsection, we show the formula for the comparison of the calculated frame tension τ
with the experimental stresses τexp(N/m2) [23,24]. We should first note that the physical unit of
the frame tension is given by (N/m) and is different from (N/m2) of the stress τexp, and, moreover,
the calculation of τ in Equation (18) is performed using the simulation unit, which is determined by
kBT=1 as described in Equation (9). Therefore, the simulation unit should be changed to the physical
unit. This unit change is made possible by using the lattice spacing a and kBT, and we have the physical
frame tension τsim(N/m2), which can be compared with τexp. The lattice spacing a is introduced to
represent the edge length of the triangle at the beginning of Equation (1), and this role of a remains
unchanged at this stage even when it is used to change the unit of τ [31].

Note that the physical unit of τ in Equation (18) is (1/m2) if Ap is replaced by Apa2

because the numerator is of unit one. Thus, the first step to change the unit of τ from the
simulation unit to the physical unit is to replace Ap with Apa2, and, consequently, we have
τsim =

{
2b〈S1〉+ 4c〈S2〉 − (3N − 4N1)

}
/(2Apa2)(1/m2). The unit of τsim can be changed further

from (1/m2) to (N/m2) by multiplying kBT/a(N), and we finally obtain

τsim =
2b〈S1〉+ 4c〈S2〉 − (3N − 4N1)

2Ap

kBT
a3 = τ

kBT
a3 (N/m2). (19)
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This τsim can be compared with the experimentally observed stresses τexp(N/m2). The fact
that τsim is proportional to T is consistent with the entropy elasticity, although τ is obtained by
temperature-independent Monte Carlo simulations. In this paper, T is fixed to room temperature to
compare τsim with the experimental data τexp, and the expression of τsim is given by

τsim =
(
4× 10−21

) τ
a3 (N/m2), (20)

where the lattice spacing a can be varied as a free parameter such that τsim is equal to τexp in the whole
or a part of the strain domain. The only constraint for a is that a should be larger than the van der
Waals distance. This aspect is also checked in detail.

2.6. Monte Carlo Simulations

The standard Metropolis technique is used to update the variables r and ~σ [49,50]. The variable r is
changed to a new position r′ such that r′= r + δr with a small random vector δr given by three uniform
random numbers. This new position r′ is accepted with the probability Min[1, exp(−δS)], where
δS = S(r′)−S(r) is the energy difference between the new (r′) and old (r) configurations. Note that
the coefficient 1/kBT is suppressed in exp(−δS) because of the assumption kBT=1 for the simulation
unit. The small vector δr is inside a sphere of radius r0, which is fixed so that the rate of acceptance
of r′ is approximately equal to 50%. This rate of acceptance mainly depends on the initial height H
(Figure 5a) and the coefficient κ of S3; it becomes smaller for larger H and larger κ. For the update of
boundary vertices, r′ is constrained to have values on the circle of diameter D0 and also inside the
small gap 2δB (Figure 5a,b). The variable ~σ is also updated to ~σ′ using the three random numbers

σx, σy, σz(∈ [−0.5, 0.5]) such that ~σ′ = (σx, σy, σz)/
√
σ2

y+σ
2
x+σ

2
z . Consequently, ~σ′ has values on the

unit sphere, and the rate of acceptance of ~σ′ is not controllable. The rate of acceptance of r′ and that of
~σ′ remain unchanged during the simulations.

The total number of vertices of the lattices for the simulations are N=9762 and N=10, 584 for the
3D and 2D models, respectively. The initial height H0(= D0) is fixed such that the frame tension τ in
Equation (18) vanishes; τ=0. This H0 is used for the strain

ε =
H
H0
− 1, (H0 = D0) (21)

and hence H0 should be carefully evaluated before the start of production runs. The parameter H0

depends on the parameters λ, b, c and κ in both the 3D and the 2D models.
The convergence speed of the simulation is relatively fast because the surface fluctuations are

considerably suppressed by the boundary circles (see Figure 5a). The thermalization Monte Carlo
sweep is 5× 106, and the physical quantities are calculated every 1000 Monte Carlo sweeps during
3× 107

∼4× 107 Monte Carlo sweeps after the thermalization terations in both the 2D and the 3D models.

3. Numerical Results

3.1. Stress–Strain Curve and the Order Parameter

In this subsection, we present the simulation data τsim in Equation (20) and the order parameter
M, which is defined by

M =
3
2

(
〈σ2

z〉 −
1
3

)
. (22)

We obtain τsim and M by varying the parameters λ, b, c and κ and compare τsim with the reported
experimental data τexp. The main purpose is to find that the Finsler geometry model can produce τsim
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comparable to τexp, and it is also interesting to find the role of these parameters in the behavior of τsim

and M.
The parameter τexp plotted in Figure 7a with the symbol (×) is the experimental (Exp) stress–strain

data τexp vs. ε of layered double hydroxide (LDH)-based elastomer nanocomposites reported in
Ref. [51]. The τexp of this nano-composite of ethylene propylene diene terpolymer (EPDM) and layered
double hydroxide (LDH), denoted by EL10, shows a standard shape of the stress–strain curve of
rubbers, where the number at the end of EL indicates the amount of LDH in phr (per hundred rubber).
Indeed, the stress turns upwards for the large-strain region, and such an upturn of strain is known to
be caused by both strain-induced crystallization and a failure or rupture phenomenon. Pradhan et al.
analyzed the experimental data using a modified Mooney–Rivlin equation and found that this upturn
of τexp of the material EL10 is mainly due to the strain-induced crystallization [51].

0 2 4 6
0
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2

3

ε

τ

:Exp

:λ=4

3D

(MPa)

κ=0.5

(a)

:λ=0.5
:λ=0.1

b=0.05
c=1.5

0 2 4 6
-0.5

0

0.5

ε

M

:λ=4
:λ=0.5
:λ=0.13D

b=0.05
c=1.5

κ=0.5

(b)

0 2 4 6
0

1
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ε

τ
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:κ=0.6
:κ=1
:κ=1.5

3D

(MPa)

b=0.05
c=1.5

λ=0.4

(c)
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-0.5
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0.5
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:κ=0.6
:κ=1
:κ=1.53D

b=0.05
c=1.5

λ=0.4

(d)

Figure 7. The simulation results of the stress–strain curves by the Finsler geometry model and the
corresponding simulated order parameters M are plotted in (a–d). The plotted data with the symbol
(×) in (a,c) are the experimental data τexp of EL10 in Ref. [51]. The parameter λ is varied in (a,b), while
in (c,d), κ is varied. The symbol τ on the vertical axes in (a),c) represents τexp or τsim.

The parameters b and c are fixed to b = 0.05 and c = 1.5, respectively, in Figure 7a–d, which
implies that the quadratic terms of ` in S2 predominantly contribute to τsim over the square term S1.
In Figure 7a,b, different values of λ are tested: λ=0.1, 0.5, 4 with fixed κ(=0.5), while in Figure 7c,d, κ
is varied as κ=0.6, 1, 1.5 with fixed λ(=0.4). The experimental data τexp plotted in Figure 7c with the
symbol (×) are the same as those in Figure 7a. As described in Section 2.5, the value of τsim depends on
the lattice spacing a. We choose a for τsim in Figure 7a,c such that τsim becomes almost identical to
τexp in the region of ε ≤ 1 approximately. The lattice spacing a assumed for τsim is summarized in the
following subsection.

We find from Figure 7a that the shape of τsim is considerably dependent on the value of λ such
that the slope of the curve decreases with decreasing λ in the intermediate region of ε. For large λ such
as λ=4 in Figure 7b, M is close to M→1 even at ε=0. This result implies that the variable ~σ aligns
almost along the height direction, even for the small region of ε→0. In contrast, for relatively smaller
λ such as λ=0.5 and λ=0.1, M decreases to M→0 for ε→0, where ~σ is almost random. In the case
of λ=0.1, M smoothly varies from M=0 to M→1, and, in this case, τsim becomes close to τexp. This
result implies that the internal directional degrees of freedom of the polymer represented by ~σ play
an important role in the highly nonlinear behavior of τsim.
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It is confirmed from Figure 7c that the slope can also be reduced by increasing κ. We also find
from Figure 7d that the three Ms are almost identical to each other and vary from M' 0.1 to M' 1
with increasing ε. This variation of M is almost consistent with that of M in Figure 7b for λ= 0.1,
corresponding to the case of τsim being close to τexp in Figure 7a. This consistency in M is the reason that
the corresponding stress–strain curve in Figure 7c is very close to the experimental data τexp. However,
the other two curves in Figure 7c deviate from the experimental data when κ increases/decreases from
κ=1, even though M remains almost unchanged. From this finding, we understand that the stiffness
of the material can also change the slope of the stress–strain curves without changing the internal
structure of the material.

Next, we studied the experimental data of nanocomposites of carboxylated nitrile rubber (XNBR)
and layered double hydroxide (LDH), denoted by XL10 and XL5 in Ref. [51], where the number at the
end of XL indicates the amount of LDH in phr. The strain of the material is very large and extends up
to 1200% or more depending on the concentration of LDH, and upturns of the strain are also observed.
The upturn of the strain is known to be partially due to the effect of strain-induced crystallization and
also due to the presence of fillers, which lead to strain amplification. Therefore, in the large-strain
region, the ideal chain assumption is no longer valid, and, hence, it is interesting to see whether the
Finsler geometry model can produce such large-strain curves.

The simulation data plotted in Figure 8a,b are obtained by fixing the parameters b and c to b=1
and c = 1.05, 0.15, 0.015, respectively [52]. These combinations of b and c such that b(= 1) ' c or
b(=1)>c are in sharp contrast to those in Figure 7a–d, where b(=0.05)�c(=1.5). The parameter c (κ)
is varied, and λ, b and κ (c) are fixed in Figure 8a,b (Figure 8c,d). The Exp data τexp (×) in Figure 8a,c
are for XL10 and XL5, respectively.
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Figure 8. The simulation results of the stress–strain curves and order parameter M by the Finsler
geometry model are plotted in (a–d), and the plotted data with the symbol (×) are the experimental
data τexp of (a) XL10 and (c) XL5 in Ref. [51]. The parameter c is varied in both (a,b) and (c,d).

We find from Figure 8a (Figure 8c) that the slope of τsim in the intermediate region of ε decreases
with decreasing c (increasing κ). From the behavior of τsim in Figures 7a and 8a, we find that the
effect of reducing c on τsim is almost the same as that of reducing λ. This result is also confirmed
by comparing M in Figure 8b with the results plotted in Figure 7b. The only difference is that M in
Figure 8b,d is not close to M→1 in the maximum ε region for sufficiently small c such as c= 0.015



Symmetry 2019, 11, 1124 14 of 22

and c= 0.045. For a smaller region of c such as c= 0.0075 or less, M almost satisfies M' 0 even for
sufficiently large ε.

The 2D simulation data τsim and M are shown with the experimental data τexp of untreated
cotton/vinyl ester composites reported in Ref. [53] in Figure 9a–d. In the experimental data for τexp

(×) in Figure 9a,c, no upturn is observed [54]. Therefore, the 2D model is suitable because the τsim of
the 2D model is always linear for the large-strain region. For τsim in Figure 9a, λ is varied while b, c
and κ are fixed to b=0.4, c=1.5 and κ=1.5, respectively. The corresponding order parameters M in
Figure 9b vary from M→0 to M→1 as ε increases from zero. This behavior is almost the same as that
of the case λ=0.1 in Figure 7b of the 3D model. We also confirm that M increases in the small-strain
region if λ increases in the manner as M vs. ε in Figure 7b of the 3D model.
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Figure 9. 2D model simulation results of the stress–strain data τexp and order parameters M are plotted
in (a), (b) and (c), (d). The experimental data τexp in Ref. [53] are plotted in (a) and (c) with the symbol
(×). The parameter λ varies in (a), (b), and κ varies in (c), (d).

For τsim in Figure 9c, κ is varied while λ, b and c are fixed to λ=0.3, b=1 and c=0.3. It is also
found from Figure 9d that M of the 2D model changes depending on κ, in contrast to the case of the 3D
model in Figure 7d, where M remains unchanged against the variation in κ.

The arrangements of the parameters b and c in Figures 9a,b and 9c,d are approximately close to
those in Figures 7a,b and 7c,d for the 3D model, respectively. We find that the slope of τsim in the
intermediate ε region of the 2D model increases with increasing λ, and this behavior is consistent with
that of the 3D model shown in Figure 7a. We also find that the behavior of τsim of the 2D model in
Figure 9c against the variation in κ is consistent with that of the 3D model in Figure 7c.

To summarize, the experimental data τexp without upturns in the large-strain region are
reproducible by the 2D Finsler geometry model. It is also confirmed that there is almost no
difference between the 2D and 3D models in the behavior of τsim with respect to the variation
of λ (Figures 7a and 9a). This consistency in τsim is not always trivial because a considerable difference
is expected in the coefficients γi j, Γ(1)

i j and Γ(2)
i j,ik in Equations (A4) and (A5) for the 3D model and those

in Equation (A7) for the 2D model, as discussed in the final part of Appendix B.
Finally, in this subsection, we comment on the uniqueness of the combination of the input

parameters. The problem is whether the parameters λ, b, c and κ are uniquely determined for a given
stress–strain curve. Based on many simulations with a variety of input parameters, our observation is
that there are at least two different combinations of parameters such that the stress–strain curves are
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almost the same. For example, in the 2D model, the stress–strain curves of (λ, b, c,κ)=(0.73, 0.4, 1, 1.5)
and (λ, b, c,κ) = (0.3, 1, 0.3, 1.8) are almost identical. The first parameter set is used in Figure 9a,b.
In the case of the 3D model, the results are almost the same for (λ, b, c,κ) = (0.1, 0.05, 1.5, 0.5) and
(λ, b, c,κ) = (0.4, 0.05, 1.5, 1), where the first one is used in Figure 7a,b. In the 2D and 3D models,
the order parameters M are also relatively close to but slightly different from each other for the two
different parameter sets. This difference of M mainly comes from the difference in λ, and it also implies
a difference of the internal structure corresponding to the polymer direction.

3.2. Simulations for Strain-Induced Crystallization

In the preceding subsection, we find that the dependence of τsim on the variation of λ in the 2D
model is consistent with that of the 3D model. This result indicates that the dependence of τsim on the
variation of λ is universal in the Finsler geometry model. Therefore, recalling that the crystallization
ratio χ [1–4] is considered to be closely connected to M, it is interesting to see whether the response of
τ and M against the change of λ in the 3D model is compatible with the values of τexp and χ observed
in the experiments on the extension/recovery processes. We have to emphasize that strain-induced
crystallization is a time-dependent phenomenon, while the Monte Carlo results can represent only
equilibrium properties; hence, the purpose of this subsection is simply to find whether the Monte Carlo
results of the 3D model are compatible with the hysteresis behaviors in the experimental strain-induced
crystallization data [1–4] (Figure 1b,c).

We plot two different stress–strain curves in Figure 10a obtained under b=1, c=1.5 and κ=4.
The difference of the curves comes from the difference of λ such that λ = 0 (©) and λ = 2 (4),
corresponding to the arrows pointing in opposite directions. The lattice spacing a is suitably chosen
such that two curves of τsim are identical to each other at ε'6. The direction of the arrows in Figure 10a
simply indicates that τsim corresponds to the experimental extension/recovery process and does not
mean that the simulations are so-called ”hysteresis simulations” [55]. In experiments, it is expected
that the strain-induced crystallization is enhanced in the recovery process, and this enhancement is
considered to be the origin of the reduction of the slope of the stress–strain curve in the intermediate
region of ε. We find that the results in Figure 10a are compatible with this expectation because the
increment of λ aligns with ~σ, which denotes the direction of the polymer chains. In Figure 10b, the order
parameters M corresponding to τsim in Figure 10a are plotted. We also find that the behavior of M is
compatible with that of χ, which is expected to increase in the recovery process.

For another combination of parameters such as λ=0, b=1, κ=4, and with c=0.3, and c=1.5, we
also obtain the hysteresis-like behavior of τsim in Figure 10c. In this case, the difference in M is very large
(Figure 10d), though the difference in τsim in Figure 10c is not as large. In this case, the parameter c is
changed for the stretching and recovery processes, while λ is fixed to λ=0. This result implies that the
difference in the data (©) and (4) comes from the difference in the tensile energy cS2, which is directly
connected to the mechanical properties of materials. In contrast, in the case of data in Figure 10a,b,
the difference in the data (©) and (4) comes from the difference in λS0, which is also connected to the
mechanical properties of materials but indirectly. “Indirectly” implies that the tensile energies bS1

and cS2 can also be changed by the coefficients Γi j, Γ(1)
i j and Γ(2)

i j,kl, which can also be changed by the
orientation of σ in λS0. Thus, from the data presented in Figure 10a–d, we find that the prediction of
the Finsler geometry model is consistent with the strain-induced crystallization phenomenon.
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Figure 10. (a) the parameters τsim vs. ε obtained with b=1, c=1.5, κ=4 and two different λ of λ=0
and λ= 2; (b) the corresponding M vs. ε; (c) τsim vs. ε obtained with λ= 0, b = 1, κ= 4 and two
different c of c=0.3 and c=1.5; (d) the corresponding M vs. ε.

3.3. Lattice Spacing and Snapshots

In this subsection, we first show the values of the lattice spacing a used in the calculations of τsim

in Table 1. From Equation (20), we have τsim =
(
4× 10−27

)
τ/a3 (MPa), which can be identified with

τexp(MPa) if a is suitably fixed. Equivalently, we have a = (4τ/τsim)1/3
× 10−9 (m), where τ is the

simulation data in simulation units and τsim is the plotted data in Figures 7–9 with the unit (MPa).
We find that all a in Table 1 are larger than the van der Waals distance (' 10−10 (m)). Since the lattice
spacing a corresponds to the bond length of tetrahedrons or triangles that form the projected surface
and the bond length corresponds to the length of polymer chain segments, we find no problem if
a is identified with the lattice spacing. Note that a corresponding to τsim in Figure 10a,c is almost
comparable with a for τsim in Figures 7a and 8a, respectively. For this reason, the values of a for τsim in
Figure 10a,c are not included in Table 1.

Table 1. The lattice spacing a assumed to obtain τsim (in Equation (20)) plotted in Figures 7–9.

Figure Model Data (©) Data (4) Data (5)

Figure 7a 3D 9.434× 10−10 1.034× 10−9 1.109× 10−9

Figure 7c 3D 9.366× 10−10 9.819× 10−10 8.952× 10−10

Figure 8a 3D 1.029× 10−9 9.094× 10−10 1.024× 10−9

Figure 8c 3D 8.562× 10−10 9.240× 10−10 8.149× 10−10

Figure 9a 2D 5.675× 10−9 6.132× 10−9 5.152× 10−9

Figure 9c 2D 5.187× 10−9 5.390× 10−9 4.963× 10−9

Next, in Figure 11a–e, we show snapshots of 3D cylinders corresponding to the data (©) in
Figure 7a, where the assumed parameters are λ= 0.1, b = 0.05, c = 1.5 and κ= 0.5. The strains ε
for these snapshots are given by (a) ε= 0, (b) ε= 1.16, (c) ε= 3.36 and (d) ε= 5.40. The small red
lines on the surface of snapshots represent the variable ~σ. For small and intermediate ε such as
in Figure 11a,b, the variable ~σ is almost random. We can also confirm that, for large ε such as in
Figure 11c,d, the variable ~σ becomes almost parallel to the z direction.
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Figure 11. The snapshots of cylindrical surfaces corresponding to the data (©) in Figure 7a with strains
(a) ε=0; (b) ε=1.16; (c) ε=3.36; (d) ε=5.40; and (e) the rotated surface sections of a part (more than
half) of the snapshot in (d). The snapshot in (e) is rotated by π/2. The snapshots in (f–i) correspond to
the data (©) in Figure 8b with strains (f) ε=0, (g) ε=3.58, (h) ε=8, and (i) ε=12.9. The small red lines
represent the variable ~σ.

We find from these snapshots in Figure 11a–c that the surfaces maintain the cylindrical shape,
though the central part is slightly thin. However, in Figure 11d, which is the case for the largest strain,
the central part appears almost string-like. Therefore, to check whether the surface collapses, we show
the surface sections in Figure 11e, where almost 2/3 of the surface is shown and rotated by π/2 from
the vertical to the horizontal direction. From Figure 11e, we confirm that the central part of the surface
still maintains its surface structure, and, therefore, the free energy formula in Equation (17) pertains;
hence, the frame tension formula in Equation (18) can be used with those constricted surfaces.

Figure 11f–i are snapshots corresponding to the data (©) in Figure 8b, where the assumed
parameters are λ=0, b=κ=1 and c=0.045. The strains ε for these snapshots are given by (f) ε=0,
(g) ε=3.58, (h) ε=8 and (i) ε=12.9. We find from the snapshots that the surface shape remains almost
unchanged even at ε=12.9, though the diameter of the central region is slightly thin compared to that
of the boundary circle. The reason why the surface in (i) does not shrink similar to that in (d), even
though the maximum strain in (i) is almost two times larger than that in (d), is understood from the
fact that the combination of the parameters b and c assumed for the data in Figure 7a is different from
that for the data in Figure 8a. Indeed, as described in Section 3.1, the combination of the parameters
b(=0.05)� c(=1.5) assumed for τsim in Figure 7a is different from those (1=)b� c(=0.045) for τsim

in Figure 8b. This result indicates that the quadratic term S2 has a nontrivial role in causing such
a strong constriction to the surfaces.

Finally, we should like to comment on the other variants of the Finsler geometry model. The role
of ~σ in the Finsler geometry model is assumed to represent the direction of the polymer chains and
to have a nonpolar interaction. However, it is also possible to consider ~σ to be an electric dipole
moment or polarization vector p in the polymers and to have polar interactions, as in the Heisenberg
spin model for ferromagnetic phase transitions. In this case, ~σ represents the polarization p, and we
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have two possibilities for the direction of p—parallel or vertical to the polymer axis. For the parallel
case, the Finsler length vi j is defined by Equation (4), while, for the vertical case, it is defined by
vi j = |ti j · ~σi|+ v0. We have checked in both cases that the results are relatively close to those presented
in this paper and therefore can also be compared to the experimental data.

4. Summary and Conclusions

In this paper, we report the simulation data of the Finsler geometry model for the stress–strain
curve of rubbers. The Finsler geometry model for rubber is an extension of the surface model of
Helfrich and Polyakov for membranes. We find that several sets of reported experimental data of
stress–strain curves up to 1200% can be successfully reproduced by the 3D and 2D Finsler geometry
models. Moreover, the results of the 3D Finsler geometry model are consistent with the experimental
data as influenced by strain-induced crystallization and the presence of fillers.

We emphasize that the stress τ is calculated without the assumption of affine deformation in
the Finsler geometry model. This approach is in sharp contrast to the conventional modeling of
the stress–strain curve of rubbers. Indeed, we assume only that the free energy of the macroscopic
planar rubber is proportional to τ, which is the macroscopic surface tension. This assumption for τ is
physically reasonable because rubbers accumulate elastic energy if their area is increased by an external
tensile force. The entropy elasticity, which states that the stress is proportional to the temperature,
is also implemented in τsim.
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Appendix A. Discretization of the Tensile Energy for the 3D Model

The discretization of these continuous functions on 3D lattices, which are composed of tetrahedrons
such as the one in Figure A1a, is straightforward. Though the discrete form of S1 is exactly the same as
that in Ref. [23], we show the discretization technique in this paper in a self-contained way. We assume
that a local coordinate origin in a tetrahedron in Figure A1a is at vertex 1, and the corresponding
possible coordinate axes x1, x2, x3 are fixed as in Figure 4b. Using this local coordinate, we replace
the differentials ∂1r, ∂2r, and ∂3r by the differences r2−r1, r3−r1, and r4−r1, respectively. The integral∫ √

gd3x can be replaced by the sum of the tetrahedrons such that
∑

tet(v12v13v14)
−1. Thus, we have

the following discrete Hamiltonians:

S1 =
∑
tet

(
v12

v13v14
`2

12 +
v13

v12v14
`2

13 +
v14

v12v13
`2

14

)
,

S2 =
∑
tet

 v3
12

v13v14
`4

12 +
v3

13

v12v14
`4

13 +
v3

14

v12v13
`4

14 +
2v12v13

v14
`2

12`
2
13 +

2v13v14

v12
`2

13`
2
14 +

2v12v14

v13
`2

12`
2
14

 .

(A1)
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It is also possible to assume that the local coordinate origin is at the one of the other three vertices 2,
3, or 4. The corresponding discrete expressions for S1 and S2 are simply obtained by replacing the
indexes 1→2, 2→3, 3→4, and 4→1 repeatedly. Summing over all possible terms with the factor 1/4
and replacing the sum of tetrahedrons

∑
tet by the sum of bonds

∑
i j with the factor 1/N̄, we have the

discrete Hamiltonian

S1 =
∑

i j

Γi j`
2
i j, Γi j =

1
N̄

∑
tet

γi j(tet),

S2 =
∑

i j

Γ(1)
i j `

4
i j +

∑
i j,kl

Γ(2)
i j,kl`

2
i j`

2
kl, Γ(1)

i j =
1
N̄

∑
tet

γ
(1)
i j (tet), Γ(2)

i j,kl =
1
N̄

∑
tet

γ
(2)
i j,kl(tet).

(A2)

The symbols γi j in Γi j of S1 in Equation (A2) are given by

γ12 =
1
4

(
v12

v13v14
+

v21

v23v24

)
, γ13 =

1
4

(
v13

v12v14
+

v31

v32v34

)
, γ14 =

1
4

(
v14

v12v13
+

v41

v42v43

)
,

γ23 =
1
4

(
v23

v21v24
+

v32

v31v34

)
, γ24 =

1
4

(
v24

v21v23
+

v42

v41v43

)
, γ34 =

1
4

(
v34

v31v32
+

v43

v41v42

)
.

(A3)

In S2, the symbols γ(1)i j and γ(2)i j,kl in Γ(1)
i j and Γ(2)

i j,kl are defined by

γ
(1)
12 =

1
6

 v3
12

v13v14
+

v3
21
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 , γ
(1)
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1
6
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13
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v3
31
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1
6
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41
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6
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23
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and
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Figure A1. (a) a tetrahedron and a local coordinate origin at vertex 1, where the arrows denote the
local coordinate axes; (b) a triangle and a local coordinate origin at vertex 1.
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Appendix B. Discretization of the Tensile and Bending Energies for the 2D Model

The discretization techniques of S1 and S2 in the 2D model are exactly the same as those in the 3D
model except that triangles instead of tetrahedrons are used for the replacements of the derivations
∂ir(i = 1, 2) and integration

∫ √
gd2x. We have three possible local coordinate origins in a triangle

(Figure A1b), and summing over all possible terms with the factor 1/3, we obtain discrete expressions
for S1, S2 and S3:

S1 =
∑

i j

Γi j`
2
i j, Γi j =

1
N̄

∑
tet

γi j(tet),

S2(~σ) =
∑

i j

Γ(1)
i j `

4
i j +

∑
i j,kl

Γ(2)
i j,kl`

2
i j`

2
kl, Γ(1)

i j =
1
N̄

∑
tet

γ
(1)
i j (tet), Γ(2)

i j,kl =
1
N̄

∑
tet

γ
(2)
i j,kl(tet),

S3 =
∑

i j

κi j
(
1− ni · n j

)
.

(A6)

For the 2D model, we use the same symbols γi j, γ
(1)
i j and γ(2)i j,kl for S1 and S2 as those in the 3D model;

however, no confusion is expected, and these are given by

γ12 =
1
6

(
v12

v13
+

v21

v23

)
, γ23 =

1
6

(
v23

v21
+

v32

v31

)
, γ31 =

1
6

(
v31

v32
+

v13

v12

)
,

γ
(1)
12 =

1
6

v3
12

v13
+

v3
21

v23

 , γ
(1)
23 =

1
6

v3
23

v21
+

v3
32

v31

 , γ
(1)
31 =

1
6

v3
31

v32
+

v3
13

v12

 ,

γ
(2)
12,13 =

1
3

v12v13, γ
(2)
21,23 =

1
3

v21v23, γ
(2)
31,32 =

1
3

v31v32.

(A7)

We should note that the definition of vi j in the 2D model is exactly the same as that in Equation (4) for
the 3D model.

The discretization of the bending energy S3 is also easy to perform (see Ref. [24], for example).
Note that the sum

∑
i j in S3 is performed over the triangles i j, which share the same bond, and ni is

defined not at the vertex i but on the triangle i. The symbols κi j in S3 are given by

κ12 =
1
6

(
v13

v12
+

v23

v21

)
, κ23 =

1
6

(
v21

v23
+

v31

v32

)
, κ31 =

1
6

(
v32

v31
+

v12

v13

)
. (A8)

We should comment on the difference of the coefficients γi j and Γ(1)
i j , Γ(2)

i j,ik between the 2D and 3D
models. First, γi j in Equation (A7) and κi j in Equation (A8) of the 2D model are of “degree” 0 with
respect to vi j because both of these are rational functions of vi j, and the degree of vi j in the denominator

is identical to that in the numerator. In contrast, the coefficients Γ(1)
i j and Γ(2)

i j,ik in Equation (A7) are of
degree 2 with respect to vi j as a result of the fact that S2 in Equation (A6) is not conformally invariant
(as mentioned in Section 2.3). In the case of the 3D model, not only S2 but also S1 in Equation (A2) is
not conformally invariant, and therefore γi j in Equation (A3) and Γ(1)

i j , Γ(2)
i j,ik in Equations (A4) and (A5)

are of degrees −1 and 1, respectively. Both of these degrees in the coefficients of the 3D model are
different from those in the 2D model.
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