Convergence and stochastic homogenization of nonlinear integrodifferential reaction-diffusion equations via Mosco × Γ-convergence
Résumé
We investigate the convergence of sequences of nonlinear integrodifferential reaction-diffusion equations when the Fickian terms belong to a class of convex functionals defined on a Hilbert space, equipped with the Mosco-convergence, and the non Fickian terms belong to a class of convex func-tionals, whose restrictions to a compactly embedded subspace is equipped with the $\Gamma$-convergence. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...