Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-Learning and Semantic Reasoning
Résumé
The ability to efficiently detect the software protections used is at a prime to facilitate the selection and application of adequate deob-fuscation techniques. We present a novel approach that combines semantic reasoning techniques with ensemble learning classification for the purpose of providing a static detection framework for obfuscation transformations. By contrast to existing work, we provide a methodology that can detect multiple layers of obfuscation, without depending on knowledge of the underlying functionality of the training-set used. We also extend our work to detect constructions of obfuscation transformations, thus providing a fine-grained methodology. To that end, we provide several studies for the best practices of the use of machine learning techniques for a scalable and efficient model. According to our experimental results and evaluations on obfuscators such as Tigress and OLLVM, our models have up to 91% accuracy on state-of-the-art obfuscation transformations. Our overall accuracies for their constructions are up to 100%.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...