Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-Learning and Semantic Reasoning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-Learning and Semantic Reasoning

Ramtine Tofighi-Shirazi
  • Fonction : Auteur
  • PersonId : 1041018
Irina Mariuca Asavoae
  • Fonction : Auteur
  • PersonId : 1057906
Philippe Elbaz-Vincent

Résumé

The ability to efficiently detect the software protections used is at a prime to facilitate the selection and application of adequate deob-fuscation techniques. We present a novel approach that combines semantic reasoning techniques with ensemble learning classification for the purpose of providing a static detection framework for obfuscation transformations. By contrast to existing work, we provide a methodology that can detect multiple layers of obfuscation, without depending on knowledge of the underlying functionality of the training-set used. We also extend our work to detect constructions of obfuscation transformations, thus providing a fine-grained methodology. To that end, we provide several studies for the best practices of the use of machine learning techniques for a scalable and efficient model. According to our experimental results and evaluations on obfuscators such as Tigress and OLLVM, our models have up to 91% accuracy on state-of-the-art obfuscation transformations. Our overall accuracies for their constructions are up to 100%.
Fichier principal
Vignette du fichier
finegraineddetection-arxiv-version-1.0.pdf (912.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02355528 , version 1 (12-11-2019)

Identifiants

  • HAL Id : hal-02355528 , version 1

Citer

Ramtine Tofighi-Shirazi, Irina Mariuca Asavoae, Philippe Elbaz-Vincent. Fine-Grained Static Detection of Obfuscation Transforms Using Ensemble-Learning and Semantic Reasoning. Software Security, Protection, and Reverse Engineering Workshop (SSPREW9), Dec 2019, San Juan, United States. ⟨hal-02355528⟩
138 Consultations
288 Téléchargements

Partager

More