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ABSTRACT
The ability to efficiently detect the software protections used is at
a prime to facilitate the selection and application of adequate deob-
fuscation techniques. We present a novel approach that combines
semantic reasoning techniques with ensemble learning classifica-
tion for the purpose of providing a static detection framework for
obfuscation transformations. By contrast to existing work, we pro-
vide a methodology that can detect multiple layers of obfuscation,
without depending on knowledge of the underlying functionality of
the training-set used. We also extend our work to detect construc-
tions of obfuscation transformations, thus providing a fine-grained
methodology. To that end, we provide several studies for the best
practices of the use of machine learning techniques for a scalable
and efficient model. According to our experimental results and
evaluations on obfuscators such as Tigress and OLLVM, our models
have up to 91% accuracy on state-of-the-art obfuscation transfor-
mations. Our overall accuracies for their constructions are up to
100%.

KEYWORDS
machine learning, ensemble learning, deobfuscation, obfuscation,
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1 INTRODUCTION
Code obfuscation is a widely used software protection technique
to mitigate the risks of reverse-engineering. It aims at protecting
intellectual property by hiding the logic and data of a code. The
use of code obfuscation transformations depends on the sensitivity
of the application. Its applications are mainly digital right manage-
ment, software licensing code or white-box cryptography, among
others. Malicious codes also use extensively code obfuscation to
hide their intent, evade detection and hinder analyses.

In order to properly evaluate obfuscation transformations, or
to efficiently analyze malwares, many deobfuscation techniques
have emerged. Their goal is to remove the protection layers applied
on the code. The deobfuscation process can be seen as different
strategies such as reverting, simplifying, or gathering information
about the obfuscated code. In this paper we mainly focus on infor-
mation gathering, particularly the static detection of obfuscation
transformations. We also study an extension to the transformations
constructions, namely the different methods employed for a specific
obfuscation transformation to be achieved (e.g. dispatch-methods
for control-flow flattening or code virtualization). This approach is
previously known as metadata recovery attacks [53].

State-of-the-art deobfuscation techniques are often specific to
obfuscation transformations. For example, the work of Udupa et
al. [64] targets control-flow transformations, whereas others [6, 42,
47, 62] aim at removing opaque predicates. Generic deobfuscation
techniques, however, make no assumption about the applied pro-
tections [54, 71]. These techniques are based on dynamic symbolic
execution and may lack in code coverage and scalability.

Though obfuscation transformations are semantic-preserving,
they may introduce side effects to the code [14]. Each transforma-
tions has its own construction methodology, thus specific patterns.
Recent works try to tackle the detection of software protections us-
ing machine learning or deep learning techniques. Ugarte-Pedrero
et al. [65] propose a semi-supervised learning approach in order
to classify packed and unpacked binaries. Sun et al. [59], and more
recently Biondi et al. [7], aim at detecting and identifying packers
using machine learning techniques. Tofighi-Shirazi et al. [61] pro-
pose a deobfuscation methodology for invariant opaque predicates
based on machine learning techniques.

From the variety of obfuscation techniques, as well as deobfus-
cation methodologies, the ability to efficiently detect the software
protections used is at a prime. To that end, the recent work of Salem
et al. [53] focuses on the detection of obfuscation transformations.
Their goal is to facilitate the selection and application of adequate
deobfuscation techniques. To the best of our knowledge, their work
is the first to tackle code obfuscation detection using machine learn-
ing. However, their methodology is also prone to some limitations
as explained next.

Current limitations. Existing detection technique for code obfus-
cation [53] based on machine learning techniques comes with the
following limitations:

(1) Code dependency: machine learning and syntax-reasoning
used for the detection of obfuscation transformations can
lead to code dependency. Namely, the trained model becomes
dependent to the analyzed code used in the training set, thus
lowering its accuracy.

(2) Multi-class problem: the methodology used relies on multi-
class problems for classification. Namely, they consider that
one binary cannot be obfuscated with more than one ob-
fuscation transformation. However, transformations can be
combined, thus the necessity to be able to detect the several
applied layers.

(3) Granularity: the detection technique has a high-level of gran-
ularity. They may detect an obfuscation transformation, but
they do not focus on their constructions. The latter is of
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importance in order to decide which analysis to apply on
obfuscated code. Many transformations constructions are
made to prevent existing deobfuscation techniques.

Figure 1: Control-flow graph of a quick-sort function obfus-
cated using several Tigress transformations.

Motivation. When applying obfuscation transformations for soft-
ware protections, stealth is sometimes not desired. Many applica-
tions aim for dissuasion in order to prevent reverse-engineering.
In any case, the goal of our methodology is to provide a static and
automated framework to help reverse-engineers. By detecting ob-
fuscation transformations, andmore specifically their constructions,
an analyst will gain an important amount of time. The selection of
the deobfuscation process to apply requires such knowledge before-
hand. A motivating example is illustrated in Figure 1. It represents
the obfuscated control-flow graph of a quick-sort function. Based
on the previously introduced problems, our goal is to answer the
following questions:
• Complexity: can we detect all applied layers of obfuscation
transformation?
• Granularity: can we detect the constructions of applied ob-
fuscation transformations?
• Efficiency: can we create accurate and generic enoughmodels
for unknown data?

As previously discussed in [53], metadata recovery attacks are usu-
ally manual tasks, therefore a potential bottleneck in the reverse
engineering process. Our methodology, which could be plugged-in
a disassembler framework, provides all applied transformation and
construction and allows reverse-engineers to setup automated deob-
fuscation strategies. As an example, several opaque predicates con-
structions prevent SMT-solver based deobfuscation techniques [70].
Other recent works prevent the application of dynamic symbolic
execution techniques [5, 44]. Thus, knowing which transformations
and constructions analysts are facing may prevent using unadapted
techniques for the deobfuscation process.

Contributions. In order to face the above limitations and answer
our motivating questions, we bring the following contributions:

(1) A novel methodology that combines semantic reasoning
with ensemble learning techniques applied for a multi-label
and multi-output ensemble model. We believe that semantic
reasoning will prevent our model from code dependency
limitations, and provides us with the ability to detect several
combined layers of obfuscation transformations.

(2) An extension of our methodology for a fine-grained detec-
tion. Based on our main approach, a second classification
model is used for the detection of the transformations con-
structions, based on a multi-class classification model (i.e.
one unique label per instances).

(3) Several studies and experiments that justify the construc-
tions of our methodology. We compare different machine
learning approaches and techniques in order to build effi-
cient and scalable models. We also evaluate our methodology
against state-of-the-art obfuscators such as Tigress [12] and
Obfuscator-LLVM [29] (i.e. OLLVM).

Our paper is organized as follows. Section 2 presents the back-
ground information about code obfuscation and targeted trans-
formations. We also introduce related work, as well as notions of
supervised machine learning. Section 3 describes our methodol-
ogy which combines semantic reasoning with ensemble learning.
Section 4 contains our studies and experiments towards an effi-
cient implementation of our methodology. Section 5 illustrates our
evaluations on state-of-the-art and publicly available obfuscators.
Section 6 briefly discuss the application of our methodology to
setup deobfuscation strategies. Then, we discuss our design limita-
tions in Section 7, as well as our perspectives in Section 8. Finally,
Section 9 presents our conclusions.

Limitations. While our results illustrate the interest of themethod-
ology, evaluating the exact gain of the different components of the
approach and experimental comparison to related contributions
are left as future work.

2 BACKGROUND
We briefly present code obfuscation and some of the employed trans-
formations. Thenwe introduce several notions related to supervised
machine learning and metadata recovery attacks introduced in [53].

2.1 Code obfuscation
Collberg et al. [14] define code obfuscation as follows:
Let P T

−→ P ′ be a transformation T of a source program P into a
target program P ′. We call P T

−→ P ′ an obfuscating transformation
if P and P ′ have the same observable behavior, P ′ is harder to an-
alyze than P , and P ′ is no more than polynomially slower than P .
Consequently, the following conditions must be fulfilled for an ob-
fuscating transformation : if P fails to terminate, or terminates with
an error condition, then P ′ may or may not terminate; otherwise,
P ′ must terminate and produce the same output as P .

2.2 Obfuscation transformations
An obfuscation transformation T can be classified into different
categories such as data obfuscation, static code obfuscation, and
dynamic code obfuscation. Early techniques are given by Coll-
berg et al. [13, 14]. A classification of all these obfuscations, as
well as known deobfuscation methods has been provided by S.
Schrittwieser et al. [56]. The following paragraphs present a non-
exhaustive list of obfuscation transformations.

2.2.1 Encodings. Static data within binaries, such as strings or con-
stant values, contain useful information for an analyst. Encoding,
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as an obfuscation transformationT , converts data to a different rep-
resentation. To this end, special encoding functions are employed
to mitigate the need of storing the static data in clear text within
the binary. During execution, the inverse function is used to de-
code the obfuscated data. To prevent pattern-matching attacks, the
obfuscated representation must be parameterized in order to have
a family of representations. In other words, each representation
renders different-looking obfuscated variables. However, they are
all based on the same obfuscating algorithm.

2.2.2 Instructions substitutions. Each program behavior can be
implemented in multiple ways [68]. In other words, instructions
or sequences of instructions can be replaced with syntactically
different, yet semantically equivalent code. As an example, complex
instruction substitution include the replacement of call instructions
with a combination of push and ret instructions [35]. De Sutter
et al [60] replaced infrequently used opcodes with blocks of more
frequently used instructions in their work. This transformation
reduced the total number of different opcodes used in the code and
normalizes their frequency.

2.2.3 Opaque predicates. An opaque predicate [15] represents an
obfuscated predicate with its outcome known at obfuscation time,
but difficult to determine for a deobfuscator. Opaque predicates
are used to make static reverse-engineering more complex. They
introduce an analysis problem which is difficult to solve without
running the program. There are two types of invariant opaque pred-
icates and the two-ways opaque predicates. Collberg et al. defined
these predicates by, respectively, PT , PF and P? opaque predicates.
Several works use two-ways opaque predicates constructs, either
referred to as range-dividers [4], or as correlated opaque predi-
cates [42, 69]. Moreover, regardless of their output, e.g. their type,
there exists many different kinds of construction that produce the
opaque predicates.

2.2.4 Control-flow flattening. This obfuscation transformation aims
at obscuring links between basic-blocks by flattening the control-
flow. Wang et al. [67] describe as chenxification this transforma-
tion, which puts the basic-blocks of a program into a large switch-
statement. A dispatcher decides then where to jump next. Control-
flow flattening using a central dispatcher is also described by Chow
et al. [11]. A similar concept by Lynn and Debray [38] uses what
is called branch functions, which directs the control-flow to the
actual target based on a call table. Further control-flow obfuscation
constructions are described in [10, 17, 36, 46, 55].

2.2.5 Code virtualization. Code virtualization describes the con-
cept of converting a program functionality into byte-code for a
custom virtual machine interpreter that is bundled with the pro-
gram [23, 31]. This obfuscation transformation can also be com-
bined with polymorphism by implementing custom virtual machine
interpreters and payloads for each instance of the program [2].
Other work [66] proposes the combination of fine-granular encryp-
tion and code virtualization to hide the virtual machine code from
analysis. Collberg et al. [14] describe a variant of this concept under
the term table interpretation. A similar concept byMonden et al. [43]
uses a finite state machine-based interpreter to dynamically map
between instructions and their semantics. Thus, code virtualization
proposes many constructions, as for previous transformations.

2.2.6 Dynamic code modification. In this technique, similar func-
tions are obfuscated by providing a general template in memory
that is patched right before its execution [14]. Static analysis tech-
niques fail to analyze the program, as its functionality is available at
runtime only. Other concepts of dynamic code modification [30, 40]
implement the idea of correcting intentionally erroneous code at
runtime, right before execution.

Our goal in this paper is to evaluate our methodology against
the previously presented obfuscation transformations. Beforehand,
the next section will recall some notions about supervised machine
learning techniques for classification.

2.3 Supervised machine learning
Supervised machine learning [26, 33] provides a dedicated methodol-
ogy to produce general hypotheses from external supplied instances
via a given algorithm. From these hypotheses, predictions about
future instances are possible. The aim of a supervised machine
learning is to build a classification model which will be used to as-
sign labels to unknown instances. In other words, let X be an input
(i.e. instance) and Y the output (i.e. predicted label). A supervised
machine learning algorithm will be used to learn the mapping func-
tion f such that Y = f (X ). The goal is to approximate f such that
for any new instanceX we can predict its label Y . In our case the in-
puts are represented byn-dimensional vectors of numerical features
for which the extraction is described in the following paragraph.
The traditional single-label classification associates an instance X
with a unique label Y ′ from a previously known finite set of labels
L. This approach is then considered a binary classification problem
if |L| = 2, or a multi-class classification problem if |L| > 2. Other
approaches exist, such as the multi-label classification. In this case,
an instance X is associated with a set of labels SY ′ ⊂ L. Moreover,
if the model is based on a mapping function f that can return a set
of multiple labels, we have a multi-output classification model. In
our work, we use all these classification problems as described in
Section 3.

2.3.1 Feature extraction. Instances of a machine learning model
are usually derived from what is called raw data, i.e. the data sam-
ples we want to classify or predict. These data samples cannot be
directly given to a classification model and need to be processed
beforehand. This processing step is called feature extraction [25]
and consists in combining the raw data variables into numerical
features. It allows to effectively reduce the amount of data that must
be processed, while accurately describing the original dataset of
raw data. In our case, raw data are text documents (e.g. disassembly
code, symbolic execution state, etc.). Therefore, one practical use of
feature extraction consists in extracting the words (i.e. the features)
and classify them by frequency of use (i.e. weights). Different ap-
proaches exist for understanding what a word is and to compute its
weight. In this paper we use the bag of words approach [41], which
identifies terms with words using term frequency, in order to extract
the features for our model. It is an efficient and simple approach
which fits adequately our semantic reasoning approach.

2.3.2 Classification algorithms. The choice of which specific learn-
ing algorithm to use is a critical step. Many classification algorithms
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exist [28], each of them having different mapping functions. Clas-
sification is a common application of machine learning. As such,
there are many metrics that can be used to measure and evalu-
ate our models. In order to compute these metrics, k-Fold Cross-
Validation [32] is a frequently used technique. The definition of
k-fold cross-validation consists in reserving a particular set of sam-
ples on which the model does not train. The limited set of samples
allows to estimate how the model is expected to perform on data
not used during the training phase. The parameter k refers to the
number of groups that a given dataset of samples is split into, in
order to calculate the mean of our models accuracy as well as the
F1-score based on the value of k . While the accuracy of the model
represents the ratio of correctly predicted labels to the total of labels,
F1-score takes both false positives and negatives into account. In
our experimentations and evaluations, the accuracies and F1-scores
are calculated using k-fold cross-validation, with k = 10 for a better
generalization of our model to unknown instances.

Another application of cross-validation, introduced in [53], con-
sists in a functionality-based folding. In other words, the learning
set and training set are divided based on the functionality of the
samples from which the raw data are generated. The goal of such
evaluation methodology is to measure if the model is dependent to
the underlying code functionality, independently of the obfuscation
transformation applied. The next paragraph introduce furthermore
the work of Salem et al. [53], known as metadata recovery attack.

2.4 Related work: Metadata recovery attack
Salem et al. [53] introduce the use of machine learning techniques
to evaluate the stealth of obfuscation transformations throughout
their detection (known as metadata recovery attack). Their pri-
mary hypothesis is that machine learning techniques are capable
of implementing these attacks by classifying obfuscated programs
according to the transformations applied. Their experiments are
based on two learning algorithms, namely Naive Bayes [22] and
Decision trees [52]. Their raw data are based on static disassembly
or dynamic instruction traces, either stripped or not. Thus, we refer
to such raw data generation as syntax-reasoning. The evaluation of
their models is made with two classification techniques. The first
one is a traditional k-fold cross validation, with k = 10. The second
one is more fine-tuned since it discriminates the training and test
dataset on program functionality. In other words, the test dataset
is excluded of any raw data that have been used in the training
dataset, based on the functionality they implement. Such process is
also repeated 10 times, to calculate the average accuracy for each
fold. Their results are promising, showing up to 100% of accuracy
for obfuscation transformations detection with decision trees, on
dynamic traces. However, these results are obtained with the con-
ventional cross-validation, whereas the second classification mode
provides lower results (up to 61% of accuracy) with decision trees.
This indicates that their model is dependent of the functionality
implemented in their raw data. Moreover, their work is not imple-
mented yet to cover several layers of obfuscation transformations,
as it can be the case in most obfuscated programs. In our work, we
also used both cross-validation approach to compare our results

with their work. This gives an brief idea about the advantages of
semantic reasoning over syntax-based approaches.

Our goal in this paper is to combine semantic reasoning and more
advanced machine learning classification techniques in order to
improve the accuracy. We want to have a static analysis tool, based
on symbolic execution, in order to have a model that does not
depend on the functionality of the program. The models are used
to detect several layers of obfuscation transformations, thus having
a multi-label and multi-output classification problem. Then, we
extend our detection not only to the obfuscation transformations
but also to their constructions. To this end, in the next section, we
present our approach and methodology.

3 METHODOLOGY
In this section we present our methodology composed of several
steps, as illustrated in Figure 2. I. In order to create our models, we
generate obfuscated as well as clean samples. This generation is
done using publicly available obfuscators, specifically Tigress and
OLLVM. II. We employ then semantic reasoning via symbolic exe-
cution1 to extract our raw data, from the generated samples. This
step is presented in Section 3.1. III.We create two different datasets
for two different kinds of classifications. Using labeled raw data,
we build our datasets for the detection of obfuscation transforms,
including several combinations. Another dataset is made for the
detection of specific constructions related to the transformations.
These steps are introduced in Section 3.4. IV. The previous datasets
are used to train our models. In order to select the most relevant
approach and learning algorithms, several studies and experiments
are provided in Section 4. V. The final step consists in their evalua-
tion and their application on unknown instances, as presented in
Section 5.

3.1 Semantic reasoning
Static symbolic execution is a binary analysis technique that cap-
tures the semantics (i.e. logic) of a program. An interpreter is used
to trace the program, while assuming symbolic values for inputs
rather than obtaining concrete values as a normal execution would.
A symbolic state S is built and consists in a set of symbolic expres-
sions S for each variables (i.e. registers, memory, flags, etc.). Several
techniques exist for symbolic execution [3]. In order to avoid path
explosions in static symbolic execution, we use an intra-procedural
and bloc-centric approach, as summarized next.

3.1.1 Bloc-centric intra-procedural symbolic execution. We use se-
mantic reasoning for the generation of our raw data. The symbolic
representation helps to efficiently detect obfuscation transforma-
tions and constructions. Raw data refers to the representation of
data samples, containing noisy features, which need to be processed
in order to extract the informative characteristics to train the mod-
els. For the detection of obfuscation transformations, we choose to
work on disassembled functions of binary code. On these functions,
we apply static symbolic execution to retrieve their semantic rep-
resentation. In our work we use disassembled functions to collect
the symbolic expressions from the code, as illustrated in Algorithm
1In our work we consider semantic retrieval only. We are not interested in generating
inputs for program exploration.
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Figure 2: Design steps for fine-grained static detection of obfuscation transformations and constructions.

1. First, the semantic reasoning part of our methodology is given
a disassembled function F as input. For the learning phase of our
methodology, F needs to be labeled. In other words, we need to
know which transformations are applied in order to properly train
our model. However, in order to use our methodology as a static and
automated detection framework, F does not require to be labeled
once the models are trained. Based on F , we iterate over each basic

Algorithm 1 semantic reasoning for raw-data generation
1: procedure semantic reasoning(F : a disassembled function)
2: Initialize a dictionary L
3: for each basic block B in F do
4: IB ← getInstructions(B)
5: IRB ←getIntermediateLanguage(IB )
6: SB ←symbolicExecution(IRB )
7: NSB ←normalizeSemantics(SB )
8: L[B] ← NSB
9: end for
10: textFile = generateRawData(L, F )
11: return textFile
12: end procedure

block B. We then collect the instructions of B, denoted by IB , with
the function дetInstructions(). IB is translated into an intermediate
language, denoted by IRB , using getIntermediateLanguage().
Finally, IRB is being used for the bloc-centric symbolic execution
function symbolicExecution(). The latter will return the sym-
bolic state SB , in order words, expressions of each modified vari-
ables in a static single assignment form, based on the intermediate
representation IRB previously used. The generated semantics SB is
then normalized using normalizeSemantics() function. Finally,
the normalized semantics NSB is added to the dictionary L contain-
ing all normalized semantics for each processed basic block B. The
content of L will be used to generate our raw data as text file. Our
normalization step has the crucial role of making the model scale
to unknown data. Next, Section 3.2 describes this step, along with
the content of our raw data.

3.2 Semantic-based raw data
Intermediate representations often use concrete values within their
generated expressions. This causes raw data to depend on addresses
that are specific to some binaries and prevents our models to scale
on unknown data. Some intermediate representations also use iden-
tifiers in order to express modified registers or memory areas.
1 ExprMem ( ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0 x f f f f f f f f f f f f f f d 0 ,

6 4 ) ) , s i z e =64 ) = Expr Id ( ' RD I _ i n i t ' , s i z e =64 )
2 Expr Id ( ' a f ' , s i z e =1 ) = E x p r S l i c e ( ExprOp ( ' ^ ' , ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' ,

s i z e =64 ) , E xp r I n t ( 0 x f f f f f f f f f f f f f f c 8 , 6 4 ) ) , ExprOp ( '+ ' , Expr Id ( '
RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0 x f f f f f f f f f f f f f f f 8 , 6 4 ) ) , E xp r I n t ( 0 x30 ,
6 4 ) ) , 4 , 5 )

3 Expr Id ( 'RBP ' , s i z e =64 ) = ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0
x f f f f f f f f f f f f f f f 8 , 6 4 ) )

4 ExprMem ( ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0 x f f f f f f f f f f f f f f c 8 ,
6 4 ) ) , s i z e =32 ) = E x p r S l i c e ( Expr Id ( ' RDX_ini t ' , s i z e =64 ) , 0 , 3 2 )

5 Expr Id ( ' pf ' , s i z e =1 ) = ExprOp ( ' p a r i t y ' , ExprOp ( '& ' , ExprMem ( Exp r I n t ( 0 x606078 ,
6 4 ) , s i z e =64 ) , E xp r I n t ( 0 x f f , 6 4 ) ) )

6 Expr Id ( 'RAX ' , s i z e =64 ) = ExprMem ( Exp r I n t ( 0 x606078 , 6 4 ) , s i z e =64 )
7 Expr Id ( ' IRDst ' , s i z e =64 ) = ExprCond ( ExprMem ( Exp r I n t ( 0 x606078 , 6 4 ) , s i z e =64 ) ,

E xp r I n t ( 0 x40064b , 6 4 ) , E xp r I n t ( 0 x400644 , 6 4 ) )
8 Expr Id ( ' z f ' , s i z e =1 ) = ExprCond ( ExprMem ( Exp r I n t ( 0 x606078 , 6 4 ) , s i z e =64 ) ,

E xp r I n t ( 0 x0 , 1 ) , E xp r I n t ( 0 x1 , 1 ) )
9 ExprMem ( ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0 x f f f f f f f f f f f f f f f 8 ,

6 4 ) ) , s i z e =64 ) = Expr Id ( ' RBP_ in i t ' , s i z e =64 )
10 Expr Id ( ' o f ' , s i z e =1 ) = Exp r I n t ( 0 x0 , 1 )
11 Expr Id ( ' nf ' , s i z e =1 ) = E x p r S l i c e ( ExprMem ( Exp r I n t ( 0 x606078 , 6 4 ) , s i z e =64 ) , 6 3 ,

6 4 )
12 Expr Id ( ' c f ' , s i z e =1 ) = Exp r I n t ( 0 x0 , 1 )
13 Expr Id ( ' RSP ' , s i z e =64 ) = ExprOp ( '+ ' , Expr Id ( ' RSP_ i n i t ' , s i z e =64 ) , E xp r I n t ( 0

x f f f f f f f f f f f f f f c 8 , 6 4 ) )
14 Expr Id ( ' RIP ' , s i z e =64 ) = Exp r I n t ( 0 x400650 , 6 4 )
15 Expr Id ( ' IRDst ' , s i z e =64 ) = Exp r I n t ( 0 x400650 , 6 4 )

Listing 1: Symbolic state using Miasm2 intermediate
language

This notation may further affect the scalability of our trained mod-
els. For the purpose of having a model that can scale to unknown
data we use a normalization phase. The normalization consists
in replacing all identifiers and concrete values by symbols, and
non-alphanumerical characters by alphanumerical words. This is a
necessary step for a complete features extraction phase that some-
times excludes non-alphanumerical characters when working on
text-based raw data. In our methodology, we generate the raw data
using the Miasm2 [18] intermediate language. This language is part
of the symbolic execution engine that we use for the implemen-
tation of our methodology as IDA Pro plug-in. Additionally, the
normalized Miasm2 intermediate language has also been successful
for the application of machine learning techniques in order to de-
obfuscate opaque predicates [61]. Listing 1 illustrates the symbolic
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state S of the first basic-block of the function quick-sort, which is
illustrated in Figure 1. Note that the complete raw data will contain
the symbolic states of each basic-blocks of the quick-sort function.
We can see that Miasm2 intermediate language uses several key-
words to express the semantics of the basic blocks. For example,
ExprId is used for registers and ExprInt for concrete values. The
registers and concretes values prevent our model from scaling to
unknown data, thus potentially lowering our model accuracy. This
underlines the necessity to normalize the intermediate language
for an efficient semantic reasoning. Listing 16 illustrates the same
basic-block symbolic state, but normalized.
1 ExprMem ( ExprOp ( op + , REG0 , v0 ) , s i z e =64 ) = REG1
2 REG2 = E x p r S l i c e ( ExprOp ( op ^ , ExprOp ( op + , REG0 , v1 ) , ExprOp ( op + , REG0 , v2 ) , v3

) , 4 , 5 )
3 REG3 = ExprOp ( op + , REG0 , v2 )
4 ExprMem ( ExprOp ( op + , REG0 , v1 ) , s i z e =32 ) = E x p r S l i c e ( REG4 , 0 , 3 2 )
5 REG5 = ExprOp ( oppa r i t y , ExprOp ( op& , ExprMem ( v4 , s i z e =64 ) , v5 ) )
6 REG6 = ExprMem ( v4 , s i z e =64 )
7 IRDst = ExprCond ( ExprMem ( v4 , s i z e =64 ) , v7 , v8 )
8 REG8 = ExprCond ( ExprMem ( v4 , s i z e =64 ) , v9 , v10 )
9 ExprMem ( ExprOp ( op + , REG0 , v2 ) , s i z e =64 ) = REG9
10 REG10 = v9
11 REG11 = E x p r S l i c e ( ExprMem ( v4 , s i z e =64 ) , 6 3 , 6 4 )
12 REG12 = v9
13 REG13 = ExprOp ( op + , REG0 , v1 )
14 REG14 = v11
15 IRDst = v11

Listing 2: Symbolic state using our normalized Miasm2
intermediate language

Additionally, the normalization step also reduces the size of the raw
data. This helps enhancing the efficiency of learning and testing
phase in terms of execution time. The next sections will present the
different machine learning techniques used in our methodology.
The purpose is to create automated and efficient models for the
detection of obfuscation transformations, as well as their construc-
tions.

3.3 Ensemble learning
In machine learning, ensemble methods [19] use multiple learn-
ing algorithms. They are mostly used to obtain better predictive
performance than could be obtained from any of the constituent
learning algorithms alone [39, 51]. An ensemble, in this case, con-
sists of a set of individually trained classifiers whose predictions are
combined when processing novel instances. Different families of en-
semble learning methods exists, e.g. Bagging [9], Boosting [20, 21]
or Stacking [57]. Since every model has its strengths and weak-
nesses, ensemble models combine individual models to help cope
with the weaknesses of each algorithms. In order to select the best
possible predictions from our ensemble, we use a voting [58] al-
gorithm. Hence, a model is selected to make the final prediction
by a simple majority vote for accuracy. Our work aims to study
the benefits of ensemble learning approach over individual models.
Thus, we base our core methodology on voting classifiers. However,
a more in-depth studies of other approaches could provide better
insights into the reasons why/if ensemble models get consistenly
better results for this task.

3.4 Multi-label and multi-class classifications
Multi-label classification methods are increasingly required by mod-
ern applications [8, 37]. We use multi-label with multi-output clas-
sification, in order to return all the detected obfuscation layers,

specially when combined. We also focus on multi-class classifica-
tions which play a key role in our methodoly due to the following
facts:

(1) the detection of all the applied obfuscation transformations
is a multi-label classification problem. For example, if our set
of labels are the applied transformations, namely control-
flow flattening and code virtualization, then one binary can
have both protections. In such case, our methodology needs
to return all predicted labels. We then refer to such model as
a multi-output classification.

(2) the fine-grained detection of the constructions is amulti-class
classification problem. For example, if we know that control-
flow flattening is applied on a code, then its constructions
can only be one unique label (e.g. switch-based, ifnest-based,
indirect, call-based, etc.).

Multi-label classification methods differ from binary or multi-class
approaches. Tsoumakas et al. [63] group multi-label classification
methods into two categories: problem transformation methods that
transform the multi-label classification problem either into one or
more single-label classification problems, and algorithm adapta-
tion methods that extend specific learning algorithms in order to
handle multi-label data directly. In our methodology we use clas-
sifier chains [49], where each model is an ensemble of learning
algorithm, as presented in Section 3.3. We also study the binary
relevance methodology [24] in Section 4. These two methodologies
are briefly introduced in the following paragraphs.

3.4.1 Problem transformationmethods. the binary relevancemethod
[72] is a problem transformation technique that transforms any
multi-label problem into a binary problem for each label. Hence,
it trains several classifiers, one for each class, i.e. one per obfusca-
tion transformations. The union of all classes that are predicted is
taken as the multi-label output. Binary relevance method is popular
due to its easy implementation. However, the main drawback is
that it ignores the possible correlations between labels. Classifier
chains [50] however, as opposed to binary relevance method, take
into account the labels correlations. With this methodology we
have for n labels also n binary classifiers f0, f1, ..., fn constructed.
The construction is made as a chain where a classifier fi uses the
predictions of all its previous classifiers fj with j < i . The chain
order is randomly selected in our design.

3.4.2 Algorithm adaptation methods. Algorithm adaptation ex-
tends single label classification to the multi-label context. It is usu-
ally done by changing the decision functions. Some learning algo-
rithms support multi-label and multi-output classification (e.g. [73,
74]), whereas others can be extended.

During our experiments, these two classifications approaches, and
multi-label problems will be studied in Section 4. Our objective is
to provide the best suited algorithms and techniques for an efficient
and accurate model.

4 EXPERIMENTS
In this section we present first the dataset used, common with
previous related work [53, 61]. Our preliminary studies towards an
efficient implementation of a fine-grained detection framework are
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also introduced. All our experiments and evaluations are done on a
Windows 7 laptop, using 16GB of RAM, and an Intel processor.

4.1 Datasets
Our experiments are made on several C code samples. We use the
scikit-learn API [45] for the implementation of the models. The
datasets contain various types of code, each of them having different
functionalities in order to have models that do not fit to a specific
type of program. The used samples are listed below:
• GNU core utilities (i.e. core-utils) binaries [48] for normal
predicate samples;
• Cryptographic binaries for obfuscated and non-obfuscated
predicates [16];
• Samples from [4] containing basic algorithms (e.g. factorial,
sorting, etc.), non-cryptographic hash functions, small pro-
grams generated by Tigress;
• Samples involving the uses of structures and aliases [1, 27].

Our choice is motivated by the samples low ratio of dependencies
and their straightforward compilation. This makes their obfuscation
possible using tools such as Tigress and OLLVM without errors
during compilation. Furthermore, all datasets used for the studies and
evaluations are balanced and contain between 1000 to 5000 samples.
The obfuscation transformations applied are given in Appendix B
and A. The next section will present our studies based on these
datasets.

4.2 Preliminary studies
Our goal in this section is to provide some answers to the following
questions related to our methodology:
• Study 1: when only one obfuscation transformation is ap-
plied, is a single model more effective than ensemble models
for the detection?
• Study 2: when several obfuscation transformations are ap-
plied, can the model from Study 1 be applied to the multi-
label and multi-output classification problems?
• Study 3: when several obfuscation transformations are ap-
plied, is a multi-label and multi-output model more efficient
than one binary model for each transformation, i.e. classifier
chains?
• Study 4: for the fine-grained detection of obfuscation con-
structions, is a single model more efficient than ensemble
models?

Our studies and evaluations present two different types of results
based on two different evaluations approaches. One is the tradi-
tional k-folds cross-validation with scores in black colored font.
The other is made with the functionality-based cross-validation
approach in red colored font, used in Salem et al. related work [53].
Besides, we use as a traditional single-model random-forest al-
gorithm throughout all our studies. As for the ensemble models,
we combined extra-tree and random-forest learning algorithms.
These algorithms were selected because they provided the best
scores in terms of accuracy. For simplicity, a preliminary evaluation
was made between several learning algorithms [34] (e.g. decision
trees, k-nearest neighbors, support vector machines, neural net-
work, naive Bayes, random forest, etc.). In order to select the best

ensemble models, we combined between 2 to 6 single models, and
selected the combination that provided the best scores.

4.2.1 Study 1: In this study we experiment traditional models
against ensemble learning for multi-class classification problems.
Namely, each sample is assigned with a unique label. Thus our
model returns only one label per sample. We experiment here if
ensemble learning can be more efficient at detecting obfuscation
transformation, when only one layer is applied. Therefore, we do
not combine obfuscation transformations for this study. Table 1 il-

Obfuscation transformation Mono-model Ensemble-learning
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 93% / 98% 95% / 100%
EncL 100% / 97% 100% / 100%
EncD 95% / 98% 95% / 100%
AddO 100% / 100% 98% / 100%
Flat 97% / 100% 97% / 100%
Virt 100% / 100% 100% / 100%
Jit 100% / 100% 100% / 100%

clean 91% / 100% 91% / 100%
Overall Accuracy 97% / 99% 97% / 100%

Table 1: Multi-class accuracy and F1-scores per labels for the
detection of Tigress obfuscation transformations (1 layer).

lustrates our results where we see that ensemble-learning provides
a similar accuracy to random-forest, up to 97%, with traditional
cross-validation. The illustrated F1-scores per labels, namely the
obfuscation transforms, also points out that most of them are pred-
icated similarly with both approaches. An exception is made for
arithmetic encoding, i.e. EncA, and opaque predicates, i.e. AddO.
With the functionality-based cross-validation approach however,
the results differs more as observed in red font. Ensemble-learning
technique provides 100% accuracy and F1-score for each classes,
whereas random-forest achieves slightly lower results, with an
average accuracy at 99%. Due to the semantic reasoning of our
methodology, the results are better with this approach when hav-
ing one layer of obfuscation. Yet, these results are not sufficient
to select traditional mono-models over ensemble-learning, or the
opposite way. Hence, the next study will experiment these two
approaches for multi-label and multi-output classification.

4.2.2 Study 2: In the following study, we combine all obfuscation
transformations. The goal of our model is to correctly predict all
the applied layers of obfuscation transformation. Thus, each sample
can have one or more labels. We aim to compare the random-forest
algorithm with the ensemble model based on random-forest and
extra-trees for multi-label and multi-output classification. Our re-

Obfuscation transformation Multi-label mono-model Multi-label ensemble
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 95% / 93% 96% / 92%
EncL 90% / 78% 92% / 85%
EncD 95% / 93% 96% / 92%
AddO 96% / 88% 97% / 88%
Flat 98% / 97% 99% / 91%
Virt 99% / 98% 99% / 99%
Jit 100% / 95% 97% / 92%

clean 90% / 90% 91% / 87%
Overall Accuracy 90% / 83% 92% / 82%

Table 2: Multi-label accuracy and F1-scores per labels for the
detection of Tigress obfuscation transformations (several
layers).

sults in Table 2 illustrate that traditional cross-validation provides
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a higher overall accuracy for ensemble learning classifier as op-
posed to random forest. Our ensemble of models scores 92% as
opposed to 90% for random-forest, with F1-scores per labels above
91%. The functionality-based cross-validation provides lower re-
sults, with an overall accuracy at 83% and at 82% for respectively
random forest and ensemble models. Still, our result indicates that
both approaches can efficiently detect several layers of obfuscation
transforms. However, we may improve our results using problem
transformations methods such as classifier chains.

The next study will experiment this hypothesis.

4.2.3 Study 3: As in the second study, we combine all obfuscation
transformations but we use binary classification problem for multi-
label and multi-output classification using classifier chains. Our

Obfuscation transformation Mono-model chain Ensemble chain
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 95% / 92% 97% / 90%
EncL 90% / 80% 93% / 87%
EncD 95% / 92% 97% / 96%
AddO 96% / 92% 97% / 88%
Flat 97% / 97% 99% / 91%
Virt 99% / 98% 99% / 99%
Jit 100% / 90% 100% / 92%

clean 88% / 90% 92% / 90%
Overall Accuracy 90% / 85% 92% / 90%

Table 3: Classifier chain accuracy and F1-scores per labels
for the detection of Tigress obfuscation transformations
(several layers).

results with standard cross-validation does not different much from
previous Study 2 as illustrated in Table 3. The functionality-based
cross-validation provides improved overall accuracies and F1-scores
per labels. Ensemble models used in classifier chains provide 90%
of overall accuracy, compared to random-forest used in classifier
chains that score 85% of overall accuracy. This study led us to
select ensemble-learning techniques with classifier chains in our
methodology since classifier chains allow us to create an efficient
and accurate model for the detection of obfuscation transformations
with one or more layers.

4.2.4 Study 4: For this final study, our goal is to evaluate the mod-
els for the fine-grained detection of an obfuscation transformation
construction. We use in our dataset several Virtualized samples

Code virtualization Mono-model Ensemble model
Tigress constructions Random-forest Extra-tree & Random-forest

linear-based 100% / 99% 100% / 100%
switch-based 100% / 98% 100% / 100%
if-nest-based 100% / 100% 100% / 100%

Overall Accuracy 100% / 99% 100% / 100%
Table 4: Accuracy and F1-scores per labels for the detection
of Virtualized constructions.

with Tigress for our experiment. Tigress allows the user to select
different kinds of constructions, such as switch-based, ifnest-based,
linear-based, interpolation-based for example. This experiment is
equivalent to Study 1 in the sense that it is a multi-class classifi-
cation problem. Namely, each sample has a unique label and the
selected model will return one unique label per instance.

Our results in Table 4 show that both random-forest and ensem-
ble models provides the same F1-scores per labels. Their overall

accuracies with standard cross-validation are also with 100% accu-
racy. With functionality-based cross-validation, ensemble models
are slightly more efficient with a 100% accuracy as opposed to 99%
for mono-model based on random-forest. This led us to select en-
semble models in our methodology also for the classification of
constructions, as it allows a fined-grained detection capability.

5 EVALUATIONS
In this section we evaluate our models with respect to the following
classification problems:

(1) Multi-label andmulti-output evaluation: can our model, based
on a classifier chain of ensemble models, efficiently and ac-
curately detect all obfuscation transformations when one or
more layers are applied?

(2) Multi-class evaluation: once the obfuscation transformation
detected, can our ensemble model efficiently and accurately
detect the construction of the latter?

We use both cross-validation evaluation schemes as detailed in
Section 2.3.2. Our evaluations are made with publicly available
obfuscators, specifically Tigress and OLLVM, in order to combine
obfuscation transformations from different tools.

5.1 Transformations detection
Our goal is to evaluate the stealth of obfuscation transformation,
either applied as unique layer or combined. We use our multi-label
and multi-output model based on ensemble-models and classifier
chain to detect all the transformations applied. To measure the
efficiency of our model, we used both traditional and functionality-
based cross-validation as explained in Section 2.3.2. A list of all
combinations of the applied transformations used in our evaluations
can be found in Appendices A and B. Additionally, command line
options for Tigress and OLLVM are given in A.1 and B.1.

Obfuscation transformation Classifier Chain
OLLVM Ensemble model

bcf 98% / 98%
fla 92% / 95%
sub 82% / 80%
clean 94% / 93%

Overall Accuracy 86% / 89%
Cross-validation execution time 11s for 1000 samples

Table 5: Evaluated accuracy and F1-scores per labels for the
detection combined OLLVM transformations.

5.1.1 OLLVM. Our first evaluation uses OLLVM. It implements trans-
formations such as opaque predicates (i.e. bogus control flow, bcf ),
instruction substitutions (i.e. sub) and control-flow flattening (i.e.
fla). We built a dataset with several combinations of these trans-
formations (c.f. Appendix B) in order to measure the efficiency
of our model. Table 5 shows our results. Our model achieves an
overall accuracy of 86% with traditional cross-validation and 89%
with the functionality-based one. F1-scores for labels bcf, fla, and
clean where no transformations are applied, are over 92% and up to
98% for bcf. However, the efficiency of our model to detect OLLVM
instructions substitutions transformations, labeled as sub, achieves
a low F1-score at 80%. Further evaluations indicate that sub is often
considered clean by our model. Thus, when combined with other
transformations, sub transformation is often undetected.
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5.1.2 Tigress. Our second evaluation is made with the Tigress
obfuscator. Tigress can generate state-of-the-art transformations
such as dynamic-code generation (i.e. Jit), code-virtualization (i.e.
Virt), control-flow flattening (i.e. Flat), opaque predicates (i.e. AddO)
and several encoding (i.e. Arithmetics, Literals andData, respectively
EncA, EncL and EncD), among others. As illustrated in Table 6, our

Obfuscation transformation Classifier Chain
Tigress Ensemble model
EncA 94% / 90%
EncL 90% / 86%
EncD 92% / 91%
AddO 95% / 96%
Flat 96% / 98%
Virt 99% / 100%
Jit 100% / 100%

clean 91% / 89%
Overall Accuracy 90% / 91%

Cross-validation execution time 114s for 4000 samples
Table 6: Evaluated accuracy and F1-scores per labels for the
detection combined Tigress transformations.

model accuracy is up to 90% with standard cross-validation. With
functionality-based cross-validation, the overall accuracy is at 91%.
F1-scores for heavy transformation such as Virt and Jit are up to 99%
and 100%. The lowest F1-score is for i.e. EncL which is sometimes
considered as a clean sample by our model. Regardless, our evalu-
ation underlines the accuracy and efficiency of our methodology
against Tigress transformations.

5.1.3 OLLVM and Tigress. For this evaluation we combine both
OLLVM and Tigress datasets. We aim to see if our model is able to
detect common obfuscation transformations. Table 7 shows our

Obfuscation transformation Classifier Chain
Tigress and OLLVM Ensemble model

EncA and sub 93% / 90%
EncL 88% / 88%
EncD 90% / 88%

AddO and bcf 95% / 95%
Flat and fla 96% / 99%

Virt 99% / 100%
Jit 100% / 100%

clean 83% / 80%
Overall Accuracy 88% / 86%

Cross-validation execution time 143s for 5000 samples
Table 7: Evaluation accuracy and F1-scores per labels for the
detection of both Tigress and OLLVM transformations.

results. F1-scores for heavy transformations such as Virt, Jit and
Flat are high, averaging up to 100% for Jit as an example. Com-
bined test samples between obfuscators such EncA-sub, AddO-bcf,
and Flat-fla have high F1-scores, even when combined with other
transformations. These heavy transformations introduce important
side-effects to the code, allowing an efficient and accurate detec-
tion of our model. The ability to efficiently detect non-obfuscated
samples is still low compared to the ability to detect all layers of
obfuscation transformations. In that case, our model F1-scores are
up to 83% and 80% depending on the cross-validation approach
used. Still, our model is averaging an accuracy up to 88% and 86%.
These overall accuracies illustrate our model efficiency regarding
the detection of obfuscation transformations, even when combined,
and between the two different obfuscators.

5.1.4 OLLVM vs. Tigress. Our final evaluation aims to compare the
accuracies of our model depending on the learning dataset used.
First, we use a learning dataset only based on OLLVM transforms.
The model will be then evaluated against some similar obfuscation
transformations generated by Tigress. Second, we do the oppo-
site, namely train our model on Tigress samples to evaluate it
on OLLVM raw data. The results are displayed in Table 8. As we

Training dataset Testing dataset Overall accuracy
OLLVM Tigress (Flat) 100% / 100%
OLLVM Tigress (Flat, AddO) 68% / 61%
Tigress OLLVM (fla) 95% / 92%
Tigress OLLVM (all) 82% / 75%

Table 8: Overall accuracies of our model using either OLLVM
or Tigress learning dataset.

can see, our model efficiently detects Tigress Flat transformation
when training on 1000 samples of all OLLVM transforms, with 100%
of accuracy. Results are lower when the training dataset is based on
Tigress (4000 samples), against OLLVM fla transform, with an over-
all accuracy up to 95% with a standard cross-validation. Moreover,
we can observe that our model cannot efficiently detect Tigress
opaque predicates, i.e. AddO, when training only on OLLVM trans-
forms. The results, in that case, indicate that our model efficiently
detects the Flat transformation, but only few AddO ones. Finally,
when our model is trained on Tigress, the overall accuracy is up
to 82% against all OLLVM transforms (c.f. Appendix B). This result
indicates that our methodology provides some genericity.

5.2 Constructions detection
In this section we evaluate our model for the detection of specific
obfuscation transformations constructions. We use our multi-class
model, based on ensemble-models, to provide a fine-grained detec-
tion technique. As for previous evaluations, we use traditional and
functionality-based cross-validation techniques.

Control-flow flattening Ensemble model
Tigress and OLLVM Extra-tree & Random-forest

switch-based 98% / 95%
if-nest-based 98% / 100%

Overall Accuracy 98% / 97%
Cross-validation execution time 12s for 1000 samples

Table 9: Evaluation accuracy and F1-scores per class for the
detection of control-flow flattening constructions.

5.2.1 Control-flow flattening. As for code virtualization, control-
flow flattening can also be constructed in several ways, as intro-
duced in Section 2.2. Facing the same limitations as for code vir-
tualization constructions, we evaluated two constructions namely
switch-based from the Tigress obfuscator, and ifnest-based from
OLLVM. The evaluation results are in Table 9. Our model averages
high F1-scores and accuracy, the latter being at 98% with standard
cross-validation evaluation.

5.2.2 Opaque predicates. Many opaque predicates constructions
exists, some of them having as purpose preventing the usage of
existing deobfuscation techniques based on dynamic-symbolic exe-
cution. For the detection of their constructions, we used Tigress,
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OLLVM but also novel bi-opaque methods [70]. Our results in Ta-
ble 10 show that our model is accurately detecting opaque predi-
cates constructions. F1-scores are up to 100% with standard cross-
validation. Bi-opaque constructions are however often un-detected
when combined with other transformations.

Opaque predicates Ensemble model
Tigress and OLLVM Extra-tree & Random-forest

Floats 85% / 89%
Symbolic-memory 87% / 87%

Arithmetic 100% / 100%
Aliasing 100% / 99%

Mixed-boolean and arithmetic 100% / 96%
Overall Accuracy 95% / 93%

Cross-validation execution time 24s for 1000 samples
Table 10: Evaluation accuracy and F1-scores per class for the
detection of opaque predicates constructions.

Yet, the overall accuracy of our model is at 95% and 93% depend-
ing on the evaluation approach used. This illustrates the efficiency
of our methodology towards the detection of obfuscation transfor-
mations constructions.

6 LIMITATIONS
One threat to the validity of our results is that we only use datasets
of relatively small C programs, except for the core-utils binaries
used for non-obfuscated samples. Nevertheless, the samples used
in our dataset involve all common programming language con-
structions and various functionalities (e.g. hash functions, sorts,
cryptographic algorithms, etc.). However, our future work will in-
clude the evaluation of our methodology on other obfuscators or
programs, such as malwares. Our work shows that semantic reason-
ing combined with advanced machine learning present capabilities
for a fine-grained detection of obfuscation transforms.

The capability of detecting unknown transformations or con-
structions represents another limitation of our methodology. If our
model did not train on one specific transformation or constructions,
it will not predict properly the unknown sample. This can lead to a
loss of accuracy when unknown transformations are combined.

Dynamic transformations cause limitations to our model for the
static detection of obfuscation transforms. Despite from the fact that
we are able to accurately detect some of these transformations (i.e.
Jit, Virt), when other obfuscation transformations are applied before
them, our model is less efficient. Moreover, other transformations
such as packing, or anti-symbolic execution techniques may lower
the accuracy of our model. However, as pointed out in the next
section, our methodology can scale to dynamically collected traces
which allows to thwart some of these limitations.

7 PERSPECTIVES AND FUTUREWORK
First, more in-depth studies of aggregation approaches used in
ensemble learning must be done in order to assess if ensemble
learning are consistenly more efficient for that task compared to
mono-models. The hard voting scheme used is a simple approach,
but may not achieve the effective benefit of using the ensemble
learning approach.

As seen in [61], semantic reasoning and machine learning pro-
vides promising results for deobfuscation methodology. The evalua-
tions shown in this paper illustrate that our model does not depend

on the code functionality. A more accurate comparison must be
made as future work.

To overcome the dynamic transformations limitations, we can
adapt our methodology to dynamically collected instructions traces.
With a given instructions trace, we reconstruct each basic-blocks
and apply our semantic reasoning approach in order to generate raw
data. This step can be done either for the learning or the evaluation
phase. Our future work consists in extending the implementation
of our current framework and evaluating other combinations of
obfuscation transformations based on dynamic traces.

Another issue we need to consider is the application of n layers
of the same obfuscation transformations. Presently, our evaluations
is done by combining several transformations, but using one time
each of them. Our future study should consider the extension of
our evaluations to the use of one transformation several times.

We also plan on extending our datasets of C programs with more
complex real-world software libraries in the interest of strengthen-
ing our experiments.

8 CONCLUSIONS
In this paper we presented the efficiency of semantic reasoning
combined with advanced machine learning techniques. This combi-
nation is motivated by the construction of a fine-grained detection
framework of obfuscation transformations and constructions. By
extending our approach to multi-label and multi-output classifica-
tion, we enhanced metadata recovery attacks to the detection of
multiple layers of obfuscation transformations. We proposed a new
approach that combines a bloc-centric symbolic execution with
machine learning ensemble model and classifier chains. We used
our models to evaluate the stealth of both obfuscation transforma-
tions and constructions. Our results are promising, with overall
accuracies up to 91% for the transformations and 100% for the con-
structions, showing slight improvements with respect to current
mono-models machine learning. The use of static symbolic execu-
tion allows us to be dependent on the underlying functionality of
the code samples used for the learning phase. Our empirical studies
illustrate that our choices conduct towards the implementation of
an efficient and accurate evaluation framework against state of
the art obfuscators. However, there is still place for improvements
with a more in-depth study of learning algorithms used and their
parameters. Our work slightly improves metadata-recovery attacks,
and paves the way towards the efficient use of advanced machine
learning combined with semantic reasoning.
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A TIGRESS TRANSFORMATIONS
We list the combinations of obfuscation transformations used for
our datasets, in their application order: AddOpaque (16 or 32 times); Ad-
dOpaque, EncodeLiterals; EncodeLiterals; AddOpaque, EncodeArithmetics;
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EncodeArithmetics, AddOpaque; EncodeArithmetics; AddOpaque, Encode-
Data; EncodeData, AddOpaque; EncodeData; AddOpaque, EncodeArith-
metics, EncodeLiterals, EncodeData; EncodeData, EncodeArithmetics, En-
codeLiterals, AddOpaque; AddOpaque, Flatten ; Flatten, AddOpaque; Flatten;
Flatten, EncodeData, EncodeArithmetics, EncodeLiterals; Virtualize, Ad-
dOpaque; Virtualize; Virtualize, EncodeData, EncodeArithmetics, EncodeLit-
erals; Virtualize, Flatten; Flatten, AddOpaque, EncodeData, EncodeArith-
metics, EncodeLiterals; Virtualize, AddOpaque, EncodeData, EncodeArith-
metics, EncodeLiterals; Virtualize, Flatten, AddOpaque, EncodeData, En-
codeArithmetics, EncodeLiterals; Jit; Jit, AddOpaque; Jit, AddOpaque, En-
codeData, EncodeArithmetics, EncodeLiterals.

A.1 Commands options
1 # AddOpaque o p t i o n s
2 t i g r e s s −−Transform= I n i t E n t r o p y −−Transform= In i tOpaque −− I n i tOp a q u e S t r u c t s =

l i s t , a r ray , env −−Func t i on s =main −−Transform=AddOpaque −−Func t i on s =$ { 3 }
−−AddOpaqueCount=$ {NUM} −−AddOpaqueKinds= c a l l , f ake , t r u e

3 # F l a t t e n
4 t i g r e s s −−Transform= F l a t t e n −−F l a t t e nD i s p a t c h = swi tch , goto −−Func t i on s =$ { 3 }
5 # V i r t u a l i z e
6 t i g r e s s −−Transform= V i r t u a l i z e −−V i r t u a l i z e D i s p a t c h = swi tch , d i r e c t , i f n e s t ,

l i n e a r −−Func t i on s =$ { 3 }
7 # J i t
8 t i g r e s s − i n c l u d e $TIGRESS_HOME / j i t t e r −amd64 . c −−Transform= J i t −−Func t i on s =$

{ 3 } −− J i t E n c o d i n g =hard
9 # E n c o d e L i t e r a l s
10 t i g r e s s −−Transform= En c o d e L i t e r a l s −−Func t i on s =$ { 3 } −−En c o d e L i t e r a l s K i n d s =

i n t e g e r , s t r i n g
11 # E n c o d eA r i t hm e t i c s
12 t i g r e s s −−Transform=EncodeAr i thmet i c −−Func t i on s =$ { 3 } −−En c o d e L i t e r a l s K i n d s =

i n t e g e r
13 # EncodeData
14 t i g r e s s −−Transform=EncodeData −−L o c a l V a r i a b l e s =$ { 4 } −−EncodeDataCodecs=poly ,

xor , add −−Func t i on s =$ { 3 }

Listing 3: Tigress commands for sample generation

B OLLVM TRANSFORMATIONS
We list the combinations of obfuscation transformations used for our datasets,
in their application order: bcf; bcf, sub; bcf, sub, fla; bcf, fla, sub; sub; sub,
bcf; sub, bcf, fla ; fla ; fla, bcf ; fla, sub, bcf ; fla, bcf, sub.

B.1 Commands options
1 # Bogus c o n t r o l −f l ow
2 c l ang $ { 1 } . c −o $ { 1 } −mllvm −b c f −mllvm −bc f _p rob =50
3 c l ang $ { 1 } . c −o $ { 1 } −mllvm −b c f −mllvm −bc f _p rob =100
4 # Con t r o l −f l ow f l a t t e n i n g
5 c l ang $ { 1 } . c −o $ { 1 } −mllvm − f l a
6 c l ang $ { 1 } . c −o $ { 1 } −mllvm − f l a −mllvm − s p l i t
7 # I n s t r u c t i o n s u b s t i t u t i o n
8 c l ang $ { 1 } . c −o $ { 1 } −mllvm −sub

Listing 4: OLLVM commands for sample generation
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