Closed-loop Identification of MIMO Systems in the Prediction Error Framework: Data Informativity Analysis - Archive ouverte HAL
Article Dans Une Revue Automatica Année : 2020

Closed-loop Identification of MIMO Systems in the Prediction Error Framework: Data Informativity Analysis

Résumé

In the Prediction Error Identification framework, it is essential that the experiment yields informative data with respect to the chosen model structure to get a consistent estimate. In this work, we focus on the data informativity property for the identification of Multi-Inputs Multi-Outputs system in closed-loop and we derive conditions to verify if a given external excitation combined with the feedback introduced by the controller yields informative data with respect to the model structure. This study covers the case of the classical model structures used in prediction-error identification and the classical types of external excitation vectors, i.e., vectors whose elements are either multisine or filtered white noises.
Fichier principal
Vignette du fichier
informativity_closed-loop_vf.pdf (230.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02351669 , version 1 (06-11-2019)

Identifiants

Citer

Kévin Colin, Xavier Bombois, Laurent Bako, Federico Morelli. Closed-loop Identification of MIMO Systems in the Prediction Error Framework: Data Informativity Analysis. Automatica, 2020, 121, pp.109171. ⟨10.1016/j.automatica.2020.109171⟩. ⟨hal-02351669⟩
217 Consultations
352 Téléchargements

Altmetric

Partager

More