Long-run Satisfaction of Path Properties - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Long-run Satisfaction of Path Properties

Résumé

The paper introduces the concepts of long-run frequency of path properties for paths in Kripke structures, and their generalization to long-run probabilities for schedulers in Markov decision processes. We then study the natural optimization problem of computing the optimal values of these measures, when ranging over all paths or all schedulers, and the corresponding decision problem when given a threshold. The main results are as follows. For (repeated) reachability and other simple properties, optimal long-run probabilities and corresponding optimal memoryless schedulers are computable in polynomial time. When it comes to constrained reachability properties, memoryless schedulers are no longer sufficient, even in the non-probabilistic setting. Nevertheless, optimal long-run probabilities for constrained reachability are computable in pseudo-polynomial time in the probabilistic setting and in polynomial time for Kripke structures. Finally for co-safety properties expressed by NFA, we give an exponential-time algorithm to compute the optimal long-run frequency, and prove the PSPACE-completeness of the threshold problem.
Fichier principal
Vignette du fichier
long-run-satisfaction-2019-extended.pdf (411.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02349456 , version 1 (20-11-2019)

Identifiants

Citer

Christel Baier, Nathalie Bertrand, Jakob Piribauer, Ocan Sankur. Long-run Satisfaction of Path Properties. LICS 2019 - 34th Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2019, Vancouver, Canada. pp.1-31, ⟨10.1109/LICS.2019.8785672⟩. ⟨hal-02349456⟩
136 Consultations
155 Téléchargements

Altmetric

Partager

More