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2Univ Rennes, Inria, CNRS, IRISA, France

Abstract—The paper introduces the concepts of long-run
frequency of path properties for paths in Kripke struc-
tures, and their generalization to long-run probabilities
for schedulers in Markov decision processes. We then
study the natural optimization problem of computing the
optimal values of these measures, when ranging over all
paths or all schedulers, and the corresponding decision
problem when given a threshold. The main results are
as follows. For (repeated) reachability and other simple
properties, optimal long-run probabilities and corre-
sponding optimal memoryless schedulers are computable
in polynomial time. When it comes to constrained reach-
ability properties, memoryless schedulers are no longer
sufficient, even in the non-probabilistic setting. Neverthe-
less, optimal long-run probabilities for constrained reach-
ability are computable in pseudo-polynomial time in the
probabilistic setting and in polynomial time for Kripke
structures. Finally for co-safety properties expressed by
NFA, we give an exponential-time algorithm to compute
the optimal long-run frequency, and prove the PSPACE-
completeness of the threshold problem.

I. INTRODUCTION

While the standard semantics of temporal logics relies
on Boolean truth values for formulas over system mod-
els, several approaches have been studied to quantify
how well a system model satisfies a temporal formula.
This includes work on the robust satisfaction of tempo-
ral specifications [31], [36], vacuity and coverage se-
mantics [15], [16], [30], [32], robustness distances [10]
and the more general model-measurement semantics
based on automatic distance functions of [26]. Another
direction attempts to measure the degree to which a
specification is satisfied when evolving over time. This
includes, e.g., the work on frequency LTL [7] where a
quantitative variant aUqb of the until operator relaxes
the standard meaning of aUb by requiring that a holds
at a fraction q or more of the positions before b holds.
Other variants of frequency LTL [23], [24] allow only
a quantitative variant �q of the globally operator. The
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semantics here is that �qφ holds on a path if the long-
run average of the frequency of positions at which φ
holds is at least q. Alternatively, averaging LTL [8]
rather than truth values, assigns quantities to pairs of
paths and formula. It is based on a quantitative labeling
function for atomic propositions and inductively de-
fines the semantics of �ϕ as the average of the value
of ϕ along the path. A notable similarity of these two
quantitative extensions of LTL is the undecidability of
the model checking problem of the full logics [7], [8].
Decidable fragments of frequency LTL can be obtained
by restricting the nesting of temporal operators or the
allowed frequency thresholds [7], [23], [24].

Following the spirit of quantifying the validity of a
property along a path, we introduce the notion of long-
run frequencies for ω-regular properties. Phrased in
averaging LTL words, no nesting of the averaging op-
erators is allowed, and the labeling function is Boolean.
As the name suggests, long-run frequencies measure
in the long-run how frequently a property holds. For
finite-state Kripke structures (KS), we study the opti-
mization over all paths of the long-run frequency of a
given property.
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Fig. 1. Kripke structures requiring memory to maximize the long-
run frequency of aUb.

Fig. 1 gives two examples of KS on which one wants
to evaluate the long-run frequency of an until property.
Here a,b,c stand for atomic propositions. For the KS
on the left, the long run frequency of aUb along
e.g. the path (abc)ω is 2

3 . The maximal long-run
frequency is 1, which is achieved, e.g., by the infinite
path abca2bca4bca8bc . . . that successively doubles
the number of times the self-loop at state a is taken.
However, there is no finite-memory strategy for gener-
ating an infinite path where the long-run frequency for
aUb is 1. The KS on the right illustrates, that, even
when infinite-memory is not needed, memoryless is not



enough: for aUb, the maximal long-run frequency is
achieved by alternating between the two simple cycles
and amounts to 4

9 , which is indeed more than 2
5 the

long-run frequency of iterating the bottom cycle only.

When turning to the probabilistic world, we introduce
the corresponding concept of long-run probabilities.
On Markov chains, long-run probabilities are limit-
average probabilities for path properties, indicating the
probability for a property to hold on the suffix of a
path after many steps. They can, among others, serve
to provide refined measures for the system availability,
understood as the proportion of time a system is func-
tioning under “normal” operating conditions (after the
initialization phase). For finite Markov decision pro-
cesses (MDP), the corresponding optimization problem
is to compute the optimal long-run probability of a
given property, when ranging over all schedulers, or to
decide how this value compares to a threshold.

To illustrate the notion of long-run probability, con-
sider the MDP Nk shown in Fig. 2, the only non-
determinism is between actions α and β, and α yields
a uniform distribution over the three successors.
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Fig. 2. MDP with labels indicated by the state names requiring
counting to maximize the long-run probability of aUb.

Under the memoryless scheduler Sα that always picks
action α, the probability of aUb in the a-state is 1

2 ,
and its frequency is 3

5 . The state b1 has frequency 1
5

and from there the probability of aUb is 1. We thus
compute the long-run probability under Sα to be 1

2 .
Similarly, the steady-state probability of the states a
and b2 under the memoryless scheduler Sβ are 1

k+2 ,
and the probability that aUb holds from there is 1. The
long-run probability of aUb under Sβ equals 2

k+2 .
Observe that the satisfaction probability at the a-state
depends on the scheduler (it is 1

2 for Sα and 1 for Sβ).
The intricate interaction of satisfaction probability and
frequency of each state makes the optimization of long-
run probability particularly challenging. Here, we will
see that counting the number of consecutive visits
to the a-state allows one to derive a scheduler that
achieves a higher long-run probability than the two
memoryless ones.

Contributions: Beyond the introduction of the notions
of long-run frequency and long-run probability, in
this paper, we establish complexity bounds for the
computation of the value (optimal long-run frequency
or probability) and the associated threshold problem.
These are summarized in Table I, split depending on

the type of properties and the models (KS or MDP). In
particular, computing the optimal long-run probability
for simple properties (such as reachability, invariant,
Rabin or Streett conditions) can be done in polynomial
time for MDP, in which case optimal memoryless
schedulers exist. This entails the same complexity up-
per bound for the particular case of computing long-run
frequency of these simple properties in KS. Moreover,
the computation of the optimal long-run frequency in
KS for constrained reachability properties (expressed
by until formulas) can also be done in polynomial time,
although, as explained already, infinite memory can be
necessary. Our main contribution for non-probabilistic
structures, is an exponential time algorithm for com-
puting optimal long-run frequency for regular co-safety
properties (specified by an NFA). It is obtained by
reducing to the computation of the optimal mean-
payoff in an exponentially large weighted KS. We also
prove the PSPACE-completeness of the corresponding
threshold problem.

In comparison, the probabilistic setting is substantially
harder, already for constrained reachability properties,
expressed by until formulas. As in our illustrating
example, and contrary to the case of the simple prop-
erties mentioned above, maximizing in each state the
probability that an until property holds does not yield
the maximal long-run probability. Also when finite-
memory schedulers are optimal, as opposed to the non-
probabilistic case where memory with two modes suf-
fices, a counter up to some bound that depends on the
size of the description of the MDP is needed. Proving
the existence of this saturation point (the ideal number
of consecutive visits to a-states for the property aUb)
is the crux to derive our pseudo-polynomial time
algorithm for computing maximal or minimal long-
run probabilities. The corresponding threshold problem
is shown to be NP-hard. These two results certainly
constitute the most involved contribution of the pa-
per. We also show that the corresponding questions
for qualitative threshold problems (e.g., whether the
maximal long-run probability for an until property is
positive, or is 1) are solvable in polynomial time.

Related work: We mentioned the quantitative seman-
tics of LTL and the decidable fragments of frequency
LTL with a quantitative globally operator �q [23], [24]
which are the closest to our work. Frequency LTL,
however, is a logic to specify quantitative measures
for the satisfaction of properties along paths using the
�q-modality, while long-run probabilities are a quan-
titative measure across behaviors. For finite strongly
connected Markov chains, the probabilities for �q-
formulas are 0 or 1, while long-run probabilities can
be strictly between 0 and 1. There is still a connection
as for each finite, strongly connected Markov chain
M, �q(aUb) holds in M with probability 1 iff the
long-run probability of aUb is at least q. Nevertheless,
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non-probabilistic case
Kripke structures

probabilistic case
Markov decision processes

reachability/invariant/
Rabin/Streett conditions

value computable in polynomial-time
(special case of Theorem IV.3)

value computable in polynomial-time
(Theorem IV.3)

constrained reachability (aUb) value computable in polynomial-time
(Corollary III.3)

qualitative decision problems in polynomial-time
(Lemma IV.5)

value computable in pseudo-polynomial time
(Theorem IV.10)

NP-hard threshold problem
(Theorem IV.11)

regular co-safety (NFA)

value computable in exponential time
(Corollary III.6)

PSPACE-complete threshold problem
(Theorem III.7)

computability of the value: open

PSPACE-hard threshold problem
(consequence of Theorem III.7)

TABLE I
SUMMARY OF THE MAIN RESULTS.

the contribution for MDPs in [23], [24] are orthogonal
to ours. On the one hand, they can treat much more
complex properties with nested �q-formulas. On the
other hand, they cannot deal with formulas of the type
�q(aUb) for q < 1. The results in [23] only apply
to q = 1. The fragment in [24] can deal with �q-
modalities for arbitrary q, but imposes the constraint
that no until operator occurs in the scope of the �q-
modality.

Despite many works on long-run properties in MDPs
(e.g., mean payoff [9], [11], [27] and other cost ob-
jectives [20] or ratios [19], [37]), we are not aware
that long-run probabilities for MDPs have been studied
before. Long-run probabilities can be seen as mean-
payoff, where the weights are the satisfaction proba-
bilities. A crucial difference however with mean-payoff
and other long-run properties is that, for long-run
probabilities, the “weights” along a path are not fixed
a priori, but do depend on the scheduler. In this aspect,
there is some conceptual relation to dynamic Markov
processes [34] where cost or transition probabilities
depend on previously made decisions, or the stochastic
variant of the Canadian traveler problem [25]. These
problems, however, are concerned with finite-horizon
objectives; moreover, their weights are affected by the
past, whereas our “weights” (satisfaction probabilities)
are induced by the future scheduler.

Outline: Section II summarizes the notations used in
the paper. Our results for non-probabilistic systems are
presented in Section III, while Section IV discusses
long-run probabilities in MDPs. We conclude in Sec-
tion V. Proofs can be found in the appendix.

II. PRELIMINARIES

We suppose familiarity with linear temporal logic
(LTL), Kripke structures, finite automata, and basic
concepts of discrete Markovian models, and only pro-
vide a summary of the notations used in the paper.
Details can be found in textbooks, e.g., [3], [17], [35].

Nondeterministic finite automata (NFA): An NFA is
a tuple A = (Q,Σ,δ,Q0,F) where Q is a finite set
of states, Σ an alphabet, δ ⊆ S×Σ×S the transition
relation, Q0 ⊆Q the set of initial states and F⊆Q the
set of final states. L(A) is the accepted language of A.

Kripke structures (KSs): A KS is a tuple T =
(S,∆,AP,L) where (S,∆) is a finite directed graph, AP
a finite set of atomic propositions and L : S→ 2AP a
labeling function. The trace of a path π= s0 s1, s2 . . . is
the word L(π) = L(s0)L(s1)L(s2) . . . over 2AP obtained
by projecting states to their labels. If π= s0 s1 s2 . . . is a
path then we write first(π) for its first state s0, π[i] for
the (i+1)-st state si, and π[i...j] for the path fragment
si si+1 . . .sj. Likewise, π[0...i] and π[i...] stand for the
prefix ending in state si resp. the suffix starting from
si. If T ⊆ S, a T -state is a state in T , and a T -cycle is
a cycle consisting of T -states.

We shall use LTL-like notations to denote path proper-
ties. For instance, if T is a set of states then ♦T stands
for the event “eventually reaching T”, �T for the
event “always T” and �♦T stands for Büchi condition
“infinitely often T”. The modality U stands for the
standard until operator. Likewise, CTL-like notations
are used for state properties, e.g., s |= ∃♦T indicates
that a T -state is reachable from state s.

Weighted structures: A weighted KS extends a plain
KS T as above by a weight function wgt : ∆ → Q
that assigns rational values to transitions. We also use
weight functions on states (rather than transitions),
which can be seen as a special case of transition-based
weight functions. Given an infinite path π= s0 s1 . . . in
a weighted KS T, the mean payoff mp(π) is defined by:

mp(π) = liminf
n→∞ 1

n+1
·
n∑
i=0

wgt(si) .

The maximal mean payoff from state s, MPmax
T,s , is

supπmp(π) where π ranges over all infinite paths start-
ing at s. For I⊆ S we define MPmax

T,I = maxs∈IMPmax
T,s .

Analogous notations are used for the minimal mean
payoff.
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Markov decision processes (MDPs): An MDP is a
tuple M= (S,Act,P) where S is a finite state space, Act
a finite nonempty set of actions and P : S×Act×S→
[0,1]∩Q the transition probability function satisfying∑
t∈SP(s,α,t) ∈ {0,1} for all (s,α) ∈ S× Act. The

triples (s,α,t) with P(s,α,t)> 0 are called transitions
of M. The actions enabled in s form Act(s) = {α∈Act :∑
t∈SP(s,α,t) = 1}. We often refer to the pairs (s,α)

with α ∈ Act(s) as the state-action pairs of M. MDPs
can be augmented with atomic propositions labeling
states and weight functions, as for KSs. The size of
an MDP is the number of states and actions plus the
sum of the logarithmic lengths of the transition prob-
abilities. For a weighted MDP, we add the sum of the
logarithmic lengths of the (numerator and denominator
of) all weights.

Intuitively, when M is at a state s, then an action α of
Act(s) is selected nondeterministically; afterwards the
next state is obtained by probabilistically choosing one
of the potential successor states according to the proba-
bility distribution P(s,α, ·). Paths in MDP are alternat-
ing sequences of states and actions: π= s0α0 s1α1 . . .
where αi ∈ Act(si) and P(si,αi,si+1) > 0 for all
i > 0. The notations first(π), π[i], π[i...j] are defined
as for paths in KS. End components (ECs) of an MDP
are strongly connected sub-MDPs: they are formed of
sets of state-action pairs where the induced graph is
strongly connected. Maximal ECs (MECs) are ECs not
contained in other ECs.

A scheduler for M is a function S that maps a finite
path $ to a probability distribution over Act(last($))
(where last($) is the last state of $). Given a finite
path $, then S ↑$ denotes the residual scheduler de-
fined by (S ↑$)($ ′) =S($;$ ′) for each finite path
$ ′ starting in last($). S is deterministic if S($) is
a Dirac distribution for each finite path, in which case
S can be viewed as a function that maps finite paths
to actions. Finite-memory schedulers are those that can
be realized using a finite-state automaton whose states,
called modes, serve as memory cells (see e.g. [3] for
the formal definition). The decisions of memoryless
schedulers only depend on the last state. They can be
viewed as functions from states to distributions over
actions. We write HR for the full class of (history-
dependent randomized) schedulers, FMR or briefly FM
(resp. FMD) for the class of finite-memory randomized
(resp. deterministic) schedulers and MD for the class
of memoryless deterministic schedulers.

PrSM,s denotes the probability measure induced by
S, when s is the initial state. It is well-known that
all ω-regular path properties ϕ are measurable and
there exist FMD-schedulers maximizing or minimiz-
ing the probability for ϕ. This justifies the notations
Prmax

M,s(ϕ) and Prmin
M,s(ϕ) for ω-regular properties. We

consider the maximal (resp. minimal) expected mean
payoff, denoted Emax

M,s(MP) and Emin
M,s(MP), where

the extrema are taken over all schedulers. It is well-
known that optimal MD-schedulers for mean payoff
objectives exist and are computable in polynomial time
(see e.g. [35]). States belonging to the same MEC
have the same maximal (resp. minimal) probability
for reachability and prefix-independent properties and
the same extremal expected mean payoff. This justifies
notations like Prmax

E (♦b) or Emax
E (MP) for ECs E. As

shown in [19], for each scheduler S and each state s,
the limit of almost all infinite paths constitutes an EC.

Remark II.1 (Traps). When studying long-run fre-
quencies and long-run probabilities, we assume the
given KSs and MDPs have no traps, i.e., states with no
outgoing transitions. This ensures the existence of in-
finite paths from every state. The presented reductions,
however, can generate structures with traps, in which
case optimal strategies in the constructed structures
need to avoid these (trap) states.

III. LONG-RUN FREQUENCIES IN
NON-PROBABILISTIC SYSTEMS

Let T = (S,∆,AP,L) be a KS and ϕ a path property.
The long-run frequency for ϕ along an infinite path π
of T is defined as:

lrfϕ(π) = liminf
n→∞ 1

n+1
·
n∑
i=0

1π[i...]|=ϕ

where 1π[i...]|=ϕ
is 1 if π[i...] |=ϕ and 0 otherwise. The

problem we address is how to compute the maximal
long-run frequency for ϕ given by

LFmax
T,s (ϕ) = sup

π
lrfϕ(π)

where s∈ S and π ranges over all infinite paths starting
in state s, and the analogously defined minimal long-
run frequency LFmin

T,s(ϕ).

Obviously, the value lrfϕ(π) is prefix-independent, and
all states belonging to the same strongly connected
component (SCC) of T have the same extremal values.
It thus suffices to determine the optimal values for the
SCC of T. The optimal value for a given state s of
T is then the maximum or minimum of the optimal
values for the SCCs reachable from s. In the sequel we
therefore assume T is strongly connected, and simply
write LFmax

T (ϕ) and LFmin
T (ϕ).

As a consequence of a result established later for the
probabilistic setting (see Theorem IV.3), the extremal
long-run frequencies for invariants, reachability, Rabin
and Streett conditions are computable in polynomial
time. For KS, these techniques essentially require to
identify “good” cycles ξ where the property under
consideration holds from all states along ξ.

Reasoning about long-run frequencies becomes more
challenging when considering properties that are not
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prefix-independent and where a classification of cycles
into good and bad ones is not sufficient. The example
from Fig. 1 left, illustrates this phenomenon as already
for apparently simple properties such as constrained
reachability, maximizing the long-run frequency may
require infinite memory. As a stepping stone in this
direction, we consider until properties, and regular
co-safety properties where satisfaction is witnessed
by “good” prefixes. We first give a polynomial time
algorithm for computing optimal long-run frequencies
for until properties. The main contribution for long-run
frequencies in KSs, is then the PSPACE-completeness
for co-safety properties specified by NFA.

A. Long-run frequencies for until properties

Before presenting the polynomial-time computation
scheme for extremal long-run frequencies of until
properties, we introduce useful notations, and identify
easy particular cases. Fix a strongly connected KS T,
and the until property ϕ= aUb with a,b ∈ AP. Let

A =
{
s ∈ S | s |= ∃(aUb), s 6|= ∀(aUb)

}
,

B =
{
s ∈ S | s |= ∀(aUb)

}
, C= S\ (A∪B) .

If B = ∅, LFmax
T (aUb) = LFmin

T (aUb) = 0, thus we
assume B 6= ∅. The until properties aUb and AUB
are equivalent: for each infinite path π of T, π |= aUb
iff π |=AUB, and therefore lrf aUb(π) = lrfAUB(π).

Using these sets, we first characterize easy cases:

Lemma III.1. LFmax
T (aUb) = 1 iff T has a A∪B-

cycle. LFmin
T (aUb) = 0 iff T has a A∪C-cycle.

As a consequence of Lemma III.1 (see Lemma A.1), if
T contains an A-cycle then the values of LFmax

T (aUb)
and LFmin

T (aUb) are respectively 1 and 0. This obser-
vation permits the additional assumption that T has no
A-cycles.

The computation of LFmax
T (aUb) and LFmin

T (aUb)
reduces to the computation of the extremal mean-
payoff in a polynomial size weighted KS. The idea
of the reduction is to deal with two copies of A-
states. Intuitively, when entering an A-state there is a
nondeterministic choice between mode 0 and mode 1
where the former expects AUB to be violated, while
the latter expects some B-state will be visited after
consecutive A-states. From any state (s,0) with s∈A,
the transitions to B-states are removed. Likewise, from
states (s,1) with s ∈ A there are no transitions to
C-states. Since T has no A-cycles, the sub-graph
consisting of states in A× {0,1} is acyclic. The weight
function in T ′ is state-based and assigns weight 1 to
the states in B∪A×{1} and weight 0 to the states in
C∪A×{0}. The construction is illustrated on Fig. 3
for the KS right of Fig. 1. The soundness of the
construction is stated in the following lemma (see
Appendix, Lemma A.2 for its proof).

a,0a,1

a,1 a,0 ca,0a,1

c bcc

Fig. 3. Weighted Kripke structures obtained for the KS right of
Fig. 1: gray states have weight 1, while others have weight 0.

Lemma III.2. Suppose T has no A-cycles. Then,
LFmax

T (aUb) =MPmax
T ′ and LFmin

T (aUb) =MPmin
T ′ .

Thus, the extremal long-run frequencies for until prop-
erties are computable using standard techniques for
weighted KS with mean payoff objectives. This yields:

Corollary III.3. The values LFmax
T,s (aUb) and

LFmin
T,s(aUb) are computable in polynomial time.

Remark III.4 (Memory requirements). The example
from Fig. 1 left in the introduction shows that infi-
nite memory can be necessary to optimize the long-
frequency for until-properties. If, however, T does not
contain A-cycles, then two memory cells suffice for
optimizing the long-run frequency for AUB. (This
follows from Lemma III.2 and the well-known fact
that optimal memoryless strategies for mean payoff
objectives exist.) This stands in great contrast with the
probabilistic case, as we will see in Section IV.

B. Regular co-safety properties

We now address extremal long-run frequencies in KS
for regular co-safety properties ϕ. Fix T a strongly
connected KS, and let A= (Q,Σ,δ,Q0,F) be an NFA
over the alphabet Σ = 2AP representing ϕ, i.e., an
infinite path of T satisfies ϕ iff it has a prefix accepted
by A. Hence, lrfϕ(π), also denoted lrf A(π), is the
long-run average of positions in π where a word
in L(A) starts, and we write LF∗T(A) rather than
LF∗T(ϕ). We show that the computation of LFmax

T (A)
and LFmin

T (A) reduces to determine the maximal and
minimal mean-payoff in a weighted KS G with a gener-
alized Büchi side condition, whose size is exponential
in the size of T.

For simplicity, we suppose here that Q0 = {q0} is a
singleton and that q0 is not accessible from any other
state in A. We also assume that q0 /∈ F (otherwise A

accepts the empty word and the long-run frequency of
ϕ along any infinite path is 1). We fix an arbitrary
state s0 ∈ S which we treat as a starting state of T.
(Since T is strongly connected, the extremal long-run
frequencies in T do not depend on the choice of the
starting state.) We define a weighted KS G as follows.
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Let `= |Q| denote the number of states in the NFA A.
Then, the state space SG of G is equal to

S×
{
{∅}∪ {merged}×{0, . . . ,`}∪Q× {true, false}

}2`+1.

Each state of G tracks a state of T and in addition a
vector of 2`+1 elements, which we explain now. For
a state (s,f) ∈ SG, f(i) denotes the i-th component
and is called the i-th track. Intuitively, at every step
of the execution, the construction guesses whether ϕ
holds from the current position and creates a new track
to check this guess. Hence, the symbol ∅ is used for
tracks that are not in use; (q, true) means that the track
is at state q of A and that the final state of A will be
eventually reached (confirming the guess that ϕ holds),
while (q, false) means that no final state of A should
be reached at this track (expressing the guess that ϕ
does not hold). The symbol merged is used to merge
tracks that arrive at the same states of A with the same
guess. The formal details follow.

The set IG of initial states in G is given by:

IG =
{
(s0,f) | f(0) ∈ {(q0, true),(q0, false)}

and f(i) = ∅ for 16 i6 2`
}

That is, a single track is created at initial state q0 of A
that is either true or false. The non-determinism in the
choice of the initial state allows the execution to guess
whether ϕ holds at this position. The definition of tran-
sitions also uses non-determinism for two purposes: (i)
to guess whether ϕ holds at the given step and (ii) to
guess a successor state in A. Note that for each track
of the form (q, true), the construction will guess some
successor q ′ of q in A in an attempt to prove the guess
correct, while for each track of the form (q, false), it
will check all successors of q in order to prove that
the word that is being read is not accepted by A.

We define the transitions in two steps. The first step
consists in allowing the tracks to make progress non-
deterministically, while in the second step we merge
tracks at identical states and add the new track q0 for
the current position.

For any state (s,f) in G and each state s ′ of T,
we define relation  1 as follows: we have (s,f) 1
(s ′,f ′,H) where H=

⋃
q:∃i.f(i)=(q,false) δ(q,L(s)), if,

and only if the following holds for all 06 i6 2`,

• If f(i)∈ {∅,(merged, j)} for some j, then f ′(i) = ∅,
• If f(i) = (q,b) for some (q,b) ∈ (Q \ F) ×

{true, false}, then f ′(i) = (q ′,b) where q ′ ∈
δ(q,L(s)).

• If f(i) = (q, true) for some q ∈ F, then f ′(i) = ∅.
• If f(i) = (q, false) for some q ∈ F, then f ′(i) =

(q, false).

Here, the additional component H is the set of all suc-
cessors in A of states q which appear in f as (q, false).
In fact, these must be checked for non-acceptance, and

in the next step, new tracks (q, false) will be created for
each q∈H unless they already exist or they contradict
another guess (i.e. if some track with (q, true) exists).

The intermediary state (s ′,f ′,H) is called inconsistent
if there exists 06 i, j6 2` and q ∈Q such that one of
the conditions hold:

1) f ′(i) = (q, false) with q ∈ F,
2) f ′(i) = (q, true) and f ′(j) = (q, false),
3) f ′(i) = (q, true) for some q ∈H.

Assume (s ′,f ′,H) is consistent. Let us write H ′ = {q∈
H | ∀i.f ′(i) 6= (q, false)} = {q ′1, . . . ,q ′k}. We define the
relation  2 by (s ′,f ′,H) 2 (s ′,f ′′) if, and only if,
the following conditions hold for all 06 i6 2`:

Case f ′(i) = ∅: if i is the first such position
then f ′′(i) = (q0,b) for some b ∈ {true, false}, if it
is the l+ 1-th such position, we let f ′′(i) = q ′l, and
otherwise f ′′(i) = ∅.
Case f ′(i) = (q,b) for some (q,b) ∈Q× {true, false}:
if for all 06 j < i, f ′(j) 6= (q,b), then f ′′(i) = (q,b);
and otherwise, f ′′(i) = (merged, j) where j is the least
index of a track containing (q,b).

Hence, the second step is used to stop all redundant
tracks; for each pair (q,b) only the first track survives,
and others are stopped and labeled by (merged, j) with
j being the position of the surviving track. Making the
positions j visible in the construction is not necessary
but will be useful for the proofs. In addition, all states
q ∈ H that do not already appear in some track are
added as a new track (q, false), and a new track is
started from q0.

The transitions of G are defined as follows. We
have ((s,f),(s ′,f ′′)) ∈ ∆G if and only if (s,s ′) ∈ ∆
and there exists a consistent state (s ′,f ′,H) such
that (s,f) 1 (s

′,f ′,H) 2 (s
′′,f ′′).

The weight function of G is state-based and given
by wgt(s,f) = 1 if there exists some i with f(i) =
(q0, true), and wgt(s,f) = 0 otherwise.

For each 06 i6 2`, let us define the following labels.
Let Fi, falsei, mergedi, and ∅i denote the states (s,f)
satisfying, respectively, f(i) = (q, true) for some q∈ F,
f(i) = (q, false) for some q∈Q, f(i) = (merged, j) for
some 06 j < i, or f(i) = ∅.
We now show that the extremal long-run frequencies
for co-safety properties are computable using the above
construction in combination with techniques for one-
player mean payoff games with generalized Büchi
conditions. For this, we define Φ denote the following
generalized Büchi condition:

Φ =

2∧̀
i=0

�♦
(
falsei∨mergedi∨Fi∨∅i

)
.

Let MPmax
G (Φ) denote the maximal mean payoff in G

starting in one of the two initial states in IG while sat-
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isfying Φ. Similarly, MPmin
G (Φ) denotes the minimal

payoff in G while satisfying Φ. The soundness of our
construction is stated as follows.

Theorem III.5. For G and Φ defined as above,
LFmax

T (A) =MPmax
G (Φ) and LFmin

T (A) =MPmin
G (Φ).

We already explained that the tracks in G guess and
check the satisfaction or violation of ϕ from each
position. The additional Büchi condition is used to
make sure that these checks are conclusive: each track
of the form (q, true) must eventually either end in
an accepting state (Fi) or merge with a track with
strictly lower index (which will itself reach an accept-
ing state or merge with even smaller indexed-track).
Other tracks may stay in (·, false) or not be used (∅i).
A detailed proof of the above theorem is given in
Theorem A.4 in the Appendix.

Using [6], [28], one can compute extremal mean payoff
values in one-player games in polynomial time in the
size of the game. We apply this to G which yields the
following result (See also Appendix B):

Corollary III.6. LFmax
T,s (ϕ) and LFmin

T,s(ϕ) are com-
putable in time exponential in the size of A and
polynomial in the size of T.

We now establish the complexity of the decision
problem associated with the maximization of long-
run frequency for co-safety properties. Formally, given
a KS T, an NFA A and a rational threshold ϑ, the
threshold problem asks whether T admits an infinite
path π with lrf A(π)> ϑ.

Theorem III.7. The threshold problem for co-safety
properties in KS is PSPACE-complete.

Proof Sketch. The PSPACE upper bound is obtained
by providing a nondeterministic guess-&-check algo-
rithm that guesses a reachable state sG in G and two
cycles ξΦ and ξMP containing sG and satisfying certain
length restrictions and ξωΦ |=Φ and mp(ξωMP) > ϑ. In
fact, one can construct the desired path by alternating
between ξΦ and ξMP by making sure the former
appears infinitely often but with frequency 0.

The PSPACE lower bound follows by a polynomial
reduction from the intersection problem for determin-
istic finite automata (DFA): given k DFA D1, . . . ,Dk
over the same alphabet Σ, is the intersection lan-
guage L(D1)∩ . . .∩L(Dk) nonempty? This problem is
known to be PSPACE-complete [29]. A detailed proof
is given in Theorem A.5 in the Appendix.

Proposition III.8 (Qualitative thresholds).
Deciding the existence of an infinite path π in T with

• lrf A(π)> 0 is in PTIME;

• lrf A(π) = 0 (resp. = 1) is NP-hard;
• lrf A(π)< 1 is PSPACE-hard.

Proof sketch. The existence of an infinite path π in
T with lrf A(π)> 0 is equivalent to the existence of a
finite path in (an SCC of) T that is accepted by A. The
latter can be checked by performing a graph analysis
of the product T⊗A.

To prove the two NP-hardness results, we provide a
polynomial reduction from 3SAT. The construction of
the KS T is the same in both reductions: it runs through
each clause one after the other and selects a literal. The
constructed automata slightly differ in the two cases.
For example, for the existence of a path with long-run
frequency 0, the automaton accepts behavior where the
choice of literals to be true is conflicting.

For the last hardness result, we reduce the universality
of NFA to the problem whether for all infinite paths
π in a KS lrf A(π) = 1, and use the fact that PSPACE
is closed under complementation. Given an NFA B

over the alphabet Σ, we construct an NFA A over
the alphabet Σ ∪ {#} for a new symbol # such that
A accepts Σ∪ {#w#|w ∈ L(B)}. The Kripke structure
that generates all possible sequences of letters over
Σ∪ {#} then has a path π with lrf A(π) < 1 iff B is
non-universal. See Lemma A.8 for the full proofs.

IV. LONG-RUN PROBABILITIES IN MDP

When turning to probabilistic models, long-run prob-
abilities generalize long-run frequencies, and the ob-
jective is to compute the optimal values of these long-
run averages, when ranging over all schedulers. Our
first contribution is the identification of efficiently solv-
able instances, including prefix-independent properties
(such as Rabin or Streett conditions) where the satisfac-
tion only depends on the states that are visited infinitely
often and that can be treated by a polynomial-time
analysis of end components. Our second contribution,
and main result of this section is a pseudo-polynomial
algorithm for computing extremal long-run probabili-
ties for constrained reachability (until properties aUb).
This result can be seen as a first step towards the
treatment of more general co-safety properties in MDP
and serves to illustrate which major extra difficulties
arise when switching from long-run frequencies in KS
to long-run probabilities in MDP.

It is important to emphasize that the computation of
optimal long-run probabilities for constrained reacha-
bility does not easily reduce to reachability via a pre-
processing of the MDP, as it typically does for most
verification problems. Also, the traditional reduction
to the case of a Rabin condition for the treatment
of arbitrary ω-regular properties fails here. These
highlight the challenge and specificity in computing
long-run probabilities.
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Throughout this section, we suppose that we are given
an MDP M= (S,Act,P,AP,L) and a path property ϕ.
The long-run probability for ϕ of an infinite path π
under a scheduler S for M is defined as as the long-
run average of the probabilities for ϕ in all positions
of π with respect to the residual schedulers S ↑ π[0...i]
(see Section II for the definition of these):

lrpSϕ (π) = liminf
n→∞ 1

n+1
·
n∑
i=0

Pr
S↑π[0...i]
M,π[i]

(ϕ) .

The long-run probability for property ϕ under sched-
uler S from state s, denoted LPS

M,s(ϕ), is defined as
the expectation of the random variable π 7→ lrpSϕ (π)
under S with starting state s. We now address the task
to compute the extremal long-run probabilities for ϕ:

LPmax
M,s(ϕ) = sup

S
LPS

M,s(ϕ)

LPmin
M,s(ϕ) = inf

S
LPS

M,s(ϕ)

where S ranges over all schedulers for M, and refer
to this task as the lrp-problem. In contrast to classical
optimization problems for MDPs, the random variable
whose expectation we aim to optimize, namely lrpSϕ ,
depends on the scheduler S.

Remark IV.1 (Long-run frequencies and probabil-
ities). Computing extremal long-run frequencies for
path properties in KSs is a special case of the lrp-
problem: KSs can be viewed as MDPs where all dis-
tributions are Dirac. For such degenerated MDPs, if π
is an infinite S-path then Pr

S↑π[0...i]
M,π[i]

(ϕ) = 1π[i...]|=ϕ
.

Hence, lrfϕ(π) = lrpSϕ (π), and therefore LFmax
M,s(ϕ) =

LPmax
M,s(ϕ) and LFmin

M,s(ϕ) = LPmin
M,s(ϕ).

Analogously to extremal long-run frequencies in KSs,
we can assume MDPs to be strongly connected. Indeed
for a general MDP M without traps, one can compute
the MECs E1, . . . ,Ek in polynomial-time [13], [19].
Given a path formula ϕ, we define a weighted MDP
N, obtained from M by collapsing each MEC Ei into
a single state, say si, which is duplicated into s ′i a
trap state. The copy s ′i is reachable only from si by
a Dirac action on a fresh action symbol. The weight
function assigns LPmax

Ei
(ϕ) to state s ′i and 0 to all

other states. With this construction, LPmax
M,s(ϕ) equals

the maximal expected accumulated weight in N under
all proper schedulers, i.e., schedulers that reach the
trap states almost surely. This value is computable
in polynomial-time using standard algorithms for the
stochastic shortest path problem [1], [4], [21].

When M is strongly connected, the optimal long-run
probabilities do not depend on the starting state and
we simply write LPmax

M (ϕ) and LPmin
M (ϕ).

A. Efficiently solvable lrp instances

We first investigate special cases for which one can
obtain efficient algorithms to compute optimal long-
run probabilities : first, we explain the case of Markov
chains, and then we identify restricted classes of prop-
erties for MDPs.

Remark IV.2 (Special case of Markov chains). A
Markov chain can be seen as a degenerated MDP
where each state has a unique enabled action, in which
case the concept of schedulers is irrelevant and we
simply write lrpϕ(π) for each infinite path π. If ϕ is an
ω-regular property, for each bottom strongly connected
component (BSCC) B of the Markov chain M, the
long-run probability for all states in B is the same:

LPB(ϕ) =
∑
t∈B

lrfB(t) ·PrM,t(ϕ)

where lrfB(t) denotes the steady-state probability (de-
fined as the long-run frequency) of state t in B. Thus,
LPB(ϕ) equals the probability for ϕ in B viewed
as a Markov chain where the initial distribution is
given by the long-run frequencies in B, which again
coincides with the expected mean payoff in B when
PrM,t(ϕ) is viewed as weight for state t. The long-
run frequencies inside the BSCC are computable in
polynomial-time using a linear equation system. The
values PrM,t(ϕ) for the states inside the BSCC are
computable using standard techniques for the analysis
of Markov chains against ω-regular properties (see
e.g. [3]). The complexity depends on the type and
representation of ϕ: for instance, exponential-time
algorithms exist for LTL formulas [18]. Thus, long-run
probabilities for LTL-properties in Markov chains are
computable in exponential time. Moreover, LPM,s(ϕ)
is computable in polynomial time for those properties
ϕ where PrM,t(ϕ) is computable in polynomial time,
such as until, Rabin or Streett properties.

Alternatively, the computation of long-run probabilities
as expected mean payoff when dealing with the weight
function that assigns weight wgt(s) = PrB,s(ϕ) to each
state s can also be written as a quotient of expectations
as follows. Let s be an arbitrary state in B, called
reference state. Then, the long-run probability for ϕ
in B equals the quotient of the expected accumulated
weight along paths of length at least 1 from s until
returning to s and the expected return time (i.e.,
expected number of steps) along such paths from s to
s. (Strong connectivity ensures that both expectations
are finite.) That is,

LPB(ϕ) =
EB,s(“weight until s”)
EB,s(“steps until s”)

(?)

Finally, if B denotes the set of all BSCCs of M then
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for each state s in M:

LPM,s(ϕ) =
∑
B∈B

PrM,s(♦B) ·LPB(ϕ) .

We now identify classes of path formulas, for which
the lrp-problem is solvable in polynomial time. This
applies to (repeated) reachability and other properties
ϕ where efficiently computable schedulers S exist that
maximize the probabilities for ϕ from every visited
state in the sense that

Pr
S↑π[0...i]
M,π[i]

(ϕ) = Prmax
M,π[i]

(ϕ)

for each infinite S-path π and each position i ∈ N.
Obviously, such a scheduler S maximizes the long-run
probability for ϕ. (See Theorem A.9 and its proof.)

Theorem IV.3 (Efficiently solvable lrp-instances).
The values LPmax

M,s(ϕ) and LPmin
M,s(ϕ) are computable

in polynomial-time if ϕ has the form ♦b (reachability),
�b (invariant),

∧n
i=1
∨`i
j=1(�♦bi,j ∧ ♦�ai,j) (gen-

eralized Rabin condition), or
∧n
i=1(�♦ai → �♦bi)

(Streett condition). Moreover, FMD-scheduler are op-
timal for all these cases, and even MD-schedulers for
reachability, invariant, Büchi and co-Büchi conditions.

An analogous result for much richer classes of proper-
ties cannot be expected given that, already in the non-
probabilistic setting, infinite-memory can be necessary
for until properties (see Fig. 1 left), and co-safety
properties yield PSPACE-hardness (see Theorem III.7).

B. Long-run probabilities for until properties

We now address the case of an until property aUb.
While long-run frequencies for aUb in KSs can
be handled fairly easily using a reduction to classi-
cal mean payoff objectives, the probabilistic setting
adds major extra challenges. Recall that in strongly
connected KSs, if no infinite-memory is required,
then optimal long-run frequencies can be achieved by
strategies operating in just two modes. This stands in
contrast with the probabilistic setting where, in those
cases where no infinite-memory is needed, optimal
schedulers can need a counter for the number of
consecutive a-states up to some bound that depends
on M (rather than a constant). This phenomenon is
illustrated in the example from Fig. 2, with which we
carry on now.

Example IV.4. For the MDP Nk from in Fig. 2, we
already argued that the two MD-schedulers Sα and
Sβ achieve long-run probabilities of 1/2 and 2

k+2
for the until property aUb. Thus, as soon as k > 3,
Sα achieves the higher long-run probability, whereas
Sβ maximizes the probability of aUb from the a-
state. However, none of them is optimal. To see this,
consider the FMD-schedulers Tn for n> 1, that use a

counter for the number of consecutive visits to the a-
state, starting with counter value 1 when entering that
state via the transitions from the other states. When in
the a-state, Tn schedules action α if the counter value
is at most n and β otherwise.

We compute LPTn
Nk

(aUb) via the quotient represen-
tation shown in (?) in Remark IV.2 using that the
Markov chain Cn induced by Tn is strongly connected
and consists of the states b1,c1,b2,c2 and the states
(a,1),(a,2), . . . ,(a,n+1), where (a, i) means state a
with counter value i. We pick (a,1) as reference state.

Let us first compute the denominator. The expected
return time from (a,1) to (a,1) can be written as the
sum of the expected frequencies ef (s) of the states s
in Cn along the return paths from and to (a,1). These
values are: ef (a, i) = 1

3i−1 for i= 1, . . . ,n+1, ef (b1) =

ef (c1) =
(
1− 1

3n
)
· 1

2 , ef (b2) =
1

3n , and ef (c2) =
k

3n .

Note that each of the states (a, i), b1, c1 and b2 occurs
exactly once on each return path from (a,1) to (a,1).
Thus, for these states s, the expected frequency equals
the probability of reaching s from the reference state
(a,1). For state c2, we take into account that the self-
loop is taken an expected k−1-times. We conclude:

ECn,(a,1)(“steps until (a,1)”)

=
n+1∑
i=1

1
3i−1 +

(
1− 1

3n
)
· 12 ·2 + 1

3n + k
3n

= 1
4 ·
(
10 + (4k−2)· 1

3n
)

We now compute the expected accumulated weight
along the return paths from and to (a,1) under sched-
uler Tn. This value can be computed as the sum of the
expected frequency of every state s multiplied with its
weight. In our case, the weights are the probabilities
for aUb in Cn. That is:

ECn,(a,1)(“weight until (a,1)”)

=
∑
s

ef (s) ·PrCn,s(aUb)

where s ranges over all states in the Markov chain
Cn induced by Tn. The probability values are as
follows: PrCn,(a,i)(aUb) = 1

2 ·
(
1 + 1

3n−i+1

)
for i =

1, . . . ,n+1, PrCn,b1(aUb) = PrCn,b2(aUb) = 1, and
PrCn,c1(aUb) = PrCn,c2(aUb) = 0. So, we get:

ECn,(a,1)(“weight until (a,1)”)

=
n+1∑
i=1

1
3i−1 · 12 ·

(
1+ 1

3n−i+1

)
+
(
1− 1

3n
)
· 12 ·1

= 1
4 ·
(
5 + (2n+3)· 1

3n
)
, and

LPTn
Nk

(aUb) =
5 + (2n+3)· 1

3n

10 + (4k−2) · 1
3n

.
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Thus, Tn achieves a higher long-run probability
than Sα if n > k−2. To determine which scheduler
is optimal among the schedulers Tn with n ∈ N,
we determine the least natural number n such that
LPTn

Nk
(aUb)>LPTn+1

Nk
(aUb). Treating the computed

expression for LPTn
Nk

(aUb) as a real function in n,
one can check that the derivative has only one root
and that hence the obtained value n indeed yields the
optimal scheduler among these schedulers. For k> 2,
we obtain n= k−1.

We will see later that the maximal long-run probability
of Nk is indeed achieved by Tn for this n (see
Remark IV.12 below). Note that Nk has 5 states and
its size is in O(logk). So, this example illustrates that
even in cases where finite memory is sufficient, the
memory requirements of optimal schedulers can grow
exponentially with the size of the MDP. The same
applies to the logarithmic length of the optimal values.
To see this, we observe that in

LPTk−1
Nk

(aUb) =
5 ·3k−1 +2k+1

10 ·3k−1 +4k−2

the greatest common divisor of enumerator and denom-
inator is at most 4 (note that 2(5 ·3k−1 +(2k+1))−
(10 ·3k−1 +(4k−2)) = 4). Therefore, the binary rep-
resentation of the optimal value requires exponentially
many bits in the size of Nk. �

After this example that highlighted the challenge
in computing optimal long-run probabilities, in the
remainder of this section, we provide a pseudo-
polynomial time algorithm for computing extremal
long-run probabilities for aUb. We first fix useful no-
tations. Given a state s of M, let pmax

s = Prmax
M,s(aUb),

pmin
s = Prmin

M,s(aUb) and:

A =
{
s ∈ S | pmax

s > 0 and pmin
s < 1

}
,

B =
{
s ∈ S | pmin

s = 1
}

, C= S\ (A∪B).

Then, PrSM,s(aUb) = PrSM,s(AUB) for every s and S.
Hence, we may safely assume that the labeling function
fulfills a ∈ L(s) iff s ∈A and b ∈ L(s) iff s ∈ B. For
T ⊆ S, a T -EC denotes an end component consisting
of T -states.

Let us first consider the four qualitative variants of
the lrp-problem where the objective is to decide the
existence of a scheduler S such that LPS

M,s(aUb)
equals 1, 0, is strictly less than 1 or is positive.

Lemma IV.5 (Qualitative lrp-problems). The quali-
tative variants of the lrp-problem for MDPs and until
properties are decidable in PTIME.

Proof sketch. Positivity check is trivial as (in strongly
connected MDPs): LPS

M,s(aUb)> 0 for some sched-
uler S iff B 6= ∅. For the value 1 problem, we can

rely on: LPmax
M (aUb) = 1 iff ∃S.LPS

M,s(aUb) = 1
iff M has a (A∪B)-EC E with E∩B 6= ∅ or M has
an A-EC E with Prmax

E (aUb) = 1. The arguments for
the other two problems are analogous. For details see
Lemma A.10.

We observe that we may concentrate on maximal
long-run probabilities for until-properties since (see
Lemma A.11):

LPmin
M (aUb) = 1−LPmax

M (AUC)

if M has no A-EC. Otherwise LPmin
M (aUb) = 0.

For the rest of this section, we suppose that M is
strongly connected and does not have (A∪B)-EC E

with E∩B 6=∅, as otherwise LPmax
M (aUb) is 1.

The first important result is that LPmax
M (aUb) can

be approximated by finite-memory schedulers. This is
proved using Fatou’s lemma (see Lemma A.12).

Lemma IV.6. LPmax
M (aUb) = sup

S∈FM
LPS

M,s(aUb).

The main idea behind our algorithm is that particular
FM-schedulers suffice to achieve the extremal long-
run probabilities. In fact, we prove the existence of
a saturation point K ∈ N, such that the only kind
of memory schedulers need is to count the number
of consecutive a-states up to the current instant. We
establish this by proving that each FM-scheduler S
can be “improved” into another FM-scheduler if it
does not maximize the probability for aUb (which
does not require memory) after having generated a
sequence of K consecutive a-states. Here, improving
means increasing the long-run probability of aUb. We
will show that such a saturation point K is computable
in time polynomial in the size of M.

For α ∈ Act(s), let ps,α =
∑
t∈SP(s,α,t) ·pmax

t and
we write Actmax(s) for the set of maximizing actions,
i.e. actions α ∈ Act(s) with ps,α = pmax

s .

For a given bound K, define the class FM(K) of FM-
schedulers S for M such that

1) PrS↑$
M,last($)

(aUb) = pmax
last($) for each finite S-

path $ that has a suffix consisting of K or more
consecutive A-states, and

2) the Markov chain induced by S has a single
BSCC.

By definition, any S ∈ FM(K) only schedules max-
imizing actions (in Actmax(·)) for paths ending with
K or more consecutive A-states (by 1)); moreover, all
states in M have the same long-run probability under
S, written LPS

M(aUb), (by (2)). We now strengthen
the statement of Lemma IV.6 as follows:
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Lemma IV.7 (Saturation point). There exists K com-
putable in polynomial time and satisfying:

LPmax
M (aUb) = sup

S∈FM(K)

LPS
M(aUb) .

Proof sketch. Let us explain the choice of K and its
computation. For the soundness see Lemma A.13. Let

K = max
{
|A|, de/δe

}
(*)

where e and δ are defined as follows. Let

δs = min
{
pmax
s −ps,α : α ∈ Act(s)\Actmax(s)

}
with the convention that min∅ =∞. The value δ is
then set as δ = mins∈A δs if there exists at least one
A-state s with δs <∞ and δ= 1 otherwise. Obviously,
δ is computable in polynomial time in the size of M.
Intuitively, each δs is the minimum probability loss
when the first action of an optimal strategy for aUb
is replaced by a non-optimal action.

Let us now give a construction which allows us to de-
fine e and also to compute long-run probabilities under
schedulers of FM(K). Consider an MDP which arises
from M by adding a counter representing the number
of consecutive visits to A-states. When the counter
value exceeds a given threshold, only maximizing ac-
tions (in Actmax(·)) are enabled. Formally, given a posi-
tive integer n, we define the MDP Mn = (Sn,Act,Pn)
as follows. Sn = B ∪ C ∪ (A× {1, . . . ,n,>}), and the
transition probability function is defined by:

• If s ∈ B∪C then:
Pn(s,α,(s ′,1)) = P(s,α,s ′) if s ′ ∈A
Pn(s,α,s ′) = P(s,α,s ′) if s ′ ∈ B∪C

• If (s, i) ∈A× {1, . . . ,n−1} then:
Pn((s, i),α,s ′) = P(s,α,s ′) if s ′ ∈ B∪C
Pn((s, i),α,(s ′, i+1)) = P(s,α,s ′) if s ′ ∈A

• If s ∈A, k ∈ {n,>} and α ∈ Actmax(s) then:
Pn((s,k),α,s ′) = P(s,α,s ′) if s ′ ∈ B∪C
Pn((s,k),α,(s ′,>)) = P(s,α,s ′) if s ′ ∈A

• Pn(·) = 0 in all remaining cases.

For every state s ∈ S of M, let sn denote the “corre-
sponding” state in Mn. That is, sn= s if s∈B∪C. For
s ∈ A, we pick an arbitrary state (s, i) in Mn that is
reachable from B∪C in Mn and put sn = (s, i). In the
following, we identify Mn with its fragment consisting
of the states reachable from the set {sn : s ∈ S}. As
M, Mn is strongly connected, provided that n > |A|.
Letting N= |A|, we define

et,s = Emin
MN,tN(“steps until sN”)

as the minimal expected number of steps from state
tN to sN in MN, and define e= max

s,t∈S
et,s. The values

et,s and a corresponding MD-scheduler RN,s for MN

that minimizes the expected number of steps to state

sN from every state tN are computable in polynomial-
time using standard linear programming techniques for
stochastic shortest paths [4], [21]. The size of MN is
at most quadratic in the size of M.

Intuitively, K is chosen such that after a path of K
consecutive a-states to s, a scheduler choosing β 6∈
Actmax(s) can be improved by instead choosing an ac-
tion in Actmax(s) and hence increasing the probability
to satisfy aUb in the K-many a-states and afterwards
returning to s via a memoryless scheduler.

We define the MDP K=MK extended by the follow-
ing transition-based weight function:

• transitions from B-states have weight 1,
• transitions from states in A × {k} with k ∈

{1, . . . ,K−1} leading to a B-state have weight k,
• transitions from states (s,K) where s ∈ A have

weight K ·pmax
s ,

• transitions from states (s,>) where s ∈ A have
weight pmax

s , and

the weight of all other transitions is 0.

We reduce the computation of maximal long-run prob-
abilities in M to computing the maximal expected
mean payoff in K (see also Corollary A.18):

Lemma IV.8. LPmax
M (aUb) = Emax

K (MP).

Proof sketch. Clearly, all schedulers for K correspond
to schedulers for M. Vice versa, the behavior of
FM(K)-schedulers for M can be mimicked by sched-
ulers for K. Thanks to Lemma IV.7, we deduce that
LPmax

M (aUb) = LPmax
K (aUb).

Now, for FM-schedulers S in K that have no BSCC
consisting of A-states, the expected mean payoff agrees
with the long-run probability for aUb, while otherwise
LPS

K,s(aUb) 6 ES
K(MP). Also, each FM-scheduler

S in K that has a BSCC consisting of A-states can
be transformed into an infinite-memory scheduler T
for K such that ES

K(MP) 6 LPT
K,s(aUb). Therefore

Emax
K (MP) = LPmax

K (aUb).

Example IV.9. Consider the MDP Nk with k = 2 in
Example IV.4 which is depicted in Fig. 2. We call this
MDP M and use the notation Mn as well as the other
notations as above. First, we compute the saturation
point K: δ= pmax

a −pa,α = 1
3 . For the computation of

e, we consider the MDP M1. As we only consider
the states reachable from (a,1) and only action β is
available in this state in M1, we see that e equals the
expected number of steps from the left b state to (a,1).
So, e = k+ 1 = 3. Therefore, the saturation point is
given by K = e

δ = 9. We obtain the MDP K = M9
extended with the weight structure described above.

11



For 06 n6 8, let Tn be the scheduler which chooses
α in state (a, i) if i 6 n and β otherwise. All MD-
schedulers for K are of this form. By summation over
all paths from (a,1) to (a,1), we compute

ETn
K (MP) =

∑n
`=1

1
3`

(`+1)+ 1
3n (n+2)

2
∑n
`=1

1
3`

(`+1)+ 1
3n (n+3)

=
5+(2n+3) 1

3n

10+ 2
3n

.

The maximum is obtained for n = 1. As some MD-
scheduler maximizes the expected mean payoff in K,
we conclude that Emax

K (MP) = ET1
K (MP) = 5

9 . This
value matches the value LPT1

M(aUb) computed in
Example IV.4. �

The length of the binary representation of K is poly-
nomial in the size of M, so that the size of K =MK

is pseudo-polynomial in the size of M. We thus de-
rive a complexity upper-bound for the computation of
optimal long-run probabilities of until properties:

Theorem IV.10 (Computing optimal values). The
values LPmax

M (aUb) and LPmin
M (aUb) are computable

in pseudo-polynomial time.

Example IV.4 illustrates that optimal schedulers can
need a counter for the number of consecutive a-states
up to a saturation point that can grow exponentially
in the size of the MDP. Moreover, the logarithmic
length of the maximal long-run probability can also be
exponential in size of the MDP. This indicates that one
cannot expect a polynomial-time algorithm to compute
optimal schedulers or their values. Even the threshold
problem, asking whether LPmax

M (aUb)> ϑ, is hard:

Theorem IV.11. The threshold problem for until prop-
erties in MDP is NP-hard.

Proof sketch. We sketch the main idea here. For the
full proof see Theorem A.19. We provide a polynomial
reduction from the intersection problem for unary
DFA, i.e., DFA over a one-letter alphabet. This prob-
lem is known to be NP-complete [5]. Let D1, . . . ,Dk be
unary DFAs, and let ` be the product of their numbers
of states. Then, L(D1)∩ . . .∩L(Dk) is nonempty if
and only if L(D1)∩ . . .∩L(Dk) contains a word of
length at most `.

We construct an MDP M with the disjoint union A of
these DFAs as a substructure and a threshold ϑ such
that a scheduler has to attempt to follow a path of
the same length to an accepting state in each of the
DFAs in order to surpass the threshold. The states in M

are the A-states and four additional states init,a,b,c.
States in A and a are labeled with a and b is labeled
with b. In init and a, actions pump leading to a and
enter randomly leading to one of the initial states in A

are available. In each state in A an action α following

the transition in the DFAs is available. All of these
actions may fail with a small probability of 1

r . Failure
leads back to init. In the final states in A, an action
β leading to b is available. In b and c an action τ is
available which leads to init with probability 1

r′ and to
c otherwise.

The values r, r′, and ϑ are chosen such that a scheduler
S achieves LPS

M(aUb)> ϑ if and only if it chooses
β exactly in the moment it visited ` consecutive a-
states. For this, S can pump m 6 ` times before
entering A, but then has to follow the transitions in
a randomly chosen DFA Di for exactly `−m steps
before choosing β. But this is only possible if there
is a word of length 6 ` which is accepted by all the
DFAs. By the definition of `, this is in turn equivalent
to the non-emptiness of the intersection

⋂
iL(Di). The

main difficulty is to make sure that the chosen ϑ is
computable in polynomial time.

Remark IV.12 (Memory requirements). If M does
not have an A-EC then there are FMD-schedulers
achieving the optimal long-run frequency for aUb
that behave memoryless in (B∪C)-states and that use
a counter for the number of consecutive A-states up
to the saturation point. For MDPs with A-EC, opti-
mal schedulers can need infinite-memory depending
on whether all MD-schedulers for K with maximal
expected mean payoff have a BSCC consisting of states
in A× {>}. This, e.g., applies to cases where each EC
of M containing some B-state also contains a C-state
and there is an A-EC E where Prmax

E (aUb)>pmax
s for

all A-states s that do not belong to some A-EC. �

Proposition IV.13 (Efficiently solvable cases).
LPmax

M (aUb) can be computed in polynomial time in
each of the following particular cases

• if M has no A-cycle, or
• if for every scheduler S and every A-state s,

PrSM,s(aUb) = pmax
s .

Proof. In the first case indeed, we can let K = |A| as
saturation point, in which case the size of K=MK is
only polynomial in the size of M. In the second case,
LPmax

M (aUb) is simply the maximal mean payoff in
M when the weight of state s is pmax

s .

V. CONCLUSION

The results of the paper illustrate that the introduced
notions of long-run frequencies and probabilities for
reasoning about (long-run) average satisfaction of path
properties lead to computable measures in various
cases. While efficient and simple algorithms exist for
reachability, invariance, Streett and Rabin properties,
the complexity raises to PSPACE for co-safety. The
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probabilistic setting adds extra difficulties as illustrated
for the case of until properties in MDPs.

There are various interesting open problems. The major
open problem in the non-probabilistic setting is the
computability of long-run frequencies in KSs for ω-
regular properties specified by a Büchi automaton.
Future directions in the probabilistic setting include
the precise complexity of the threshold problems for
until properties and algorithms for computing long-
run probabilities for co-safety or ω-regular properties
and long-run expectations of, e.g., accumulated or
discounted weights.
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APPENDIX

A. Long-run frequencies for until properties in KS

Lemma A.1 (see Lemma III.1).

(a) The following three statements are equivalent:
(1) LFmax

T (aUb) = 1
(2) T has an infinite path π with lrf aUb(π) = 1.
(3) T has a A∪B-cycle.

(b) The following three statements are equivalent:
(1) LFmin

T (aUb) = 0
(2) T has an infinite path π with lrf aUb(π) = 0.
(3) T has a A∪C-cycle.

Proof. We only prove the equivalence of (1), (2) and
(3) for maximal long-run frequencies (item (a)).

“(1) =⇒ (3)”: suppose that T does not have A∪B-
cycles. Then, each cycle in T contains a state that is
not contained in A∪B. If n= |S| is the total of number
of states then along every path latest after n steps a
state in S\ (AUB) will be reached. Hence, the long-
run frequency of each infinite path is less or equal
(n−1)/n. But then LFmax

T (aUb)6 (n−1)/n < 1

“(3) =⇒ (2)”: suppose that T has a cycle ξ consisting
of states in A∪B. If one of the states in ξ is a B-state
then the long-run frequency of the infinite path ξω is 1.
Suppose now that all states in ξ are contained in A. Let
ξ= s0 s1 . . .sn and let $= t0t1 . . .tmtm+1 . . .tk be a
path with t0 = s0 = sn = tk, t1, . . . ,tm−1 ∈A, tm ∈B.
(Recall that by definition of A we have s |= ∃(AUB)
for all states s ∈ A.) Then, the long-run frequency of
the infinite path ξ;$;ξ2;$;ξ4;$;ξ8;$; . . . is 1.

“(2) =⇒ (3)”: obvious.

The argument for statement (b) is analogous and omit-
ted here. (Note that the absence of A-cycle yields that
s |= ∃(AUC) for all states s ∈A.)

We give the precise definition of the transition function
for the weighted KS constructed in Section III-A. We
switch from T to the weighted KS T ′ with state space
S ′ = B∪C∪A× {0,1} and the following transitions:

• If (s,s ′) ∈∆ is a transition in T where s ∈ B∪C
then T ′ contains the following transitions:

– s→ (s ′,0) and s→ (s ′,1) if s ′ ∈A
– s→ s ′ if s ′ ∈ B∪C

• If (s,s ′)∈∆ is a transition in T where s∈A then
T ′ has the following transitions:

– (s,0)→ s ′ if s ′ ∈ C
– (s,1)→ s ′ if s ′ ∈ B
– (s,0)→ (s ′,0) and (s,1)→ (s ′,1) if s ′ ∈A

Recall that the weight function in T ′ is state-based and
assigns weight 1 to the states in B∪A×{1} and weight
0 to the states in C∪A×{0}.

We now introduce the following additional notation.
For s ∈ S let I(s) = {s} if s ∈ B ∪ C and I(s) =
{(s,0),(s,1)} if s ∈ A. For the following lemma, the
assumption that T is strongly connected, is irrelevant.

Lemma A.2 (See Lemma III.2). Suppose T has no A-
cycles and let s be a state of T. Then, LFmax

T,s (aUb) =
MPmax

T ′,I(s) and LFmin
T,s(aUb) =MPmin

T ′,I(s).

In particular, if T is strongly connected then
LFmax

T (aUb) =MPmax
T ′ and LFmin

T (aUb) =MPmin
T ′ as

stated in Lemma III.2.

Proof. We show that there is a bijection ι between the
infinite paths in T and in T ′ such that for each infinite
path π in T: first(ι(π)) ∈ I(first(π)) and lrf aUb(π) =
mp(ι(π)).

Given an infinite path π = s0, s1 s2 . . . in T, we define
ι(π) = s ′0 s

′
1 s
′
2 . . . as follows. If si ∈B∪C then s ′i = si.

If i = 0∨ si−1 ∈ B∪C and sisi+1 . . .sk ∈ A∗B then
s ′i s
′
i+1 . . .s ′k−1 = (si,1)(si+1,1) . . .(s ′k−1,1). Like-

wise, if i = 0∨ si−1 ∈ B∪C and sisi+1 . . .sk ∈ A∗C
then s ′i s

′
i+1 . . .s ′k−1 = (si,0)(si+1,0) . . .(s ′k−1,0). It is

easy to see that ι(π) is indeed a path in T ′ satisfy-
ing first(ι(π)) ∈ I(first(π)) and lrf aUb(π) = mp(ι(π)).
Moreover, ι is a bijection as T has no A-cycles
(and hence cannot stay forever in the sub-structures
consisting of states in A× {0,1}) and as A× {0} can
only be left vis a transition to a C-state and A× {1}
can only be left vis a transition to a B-state.

B. Long-run frequencies for co-safety properties in KS

Soundness of the weighted KS G

Before providing the proof of Theorem III.5, we show
that there are enough empty tracks to insert tracks at
states H ′ and one at q0 at the second step.

Lemma A.3. For all paths (sk,fk)k>0 of G, for
all k> 0, the following conditions hold:

• There are at most ` positions 0 6 i 6 2` such
that f(i) ∈Q× {true, false},

• there exists 0 6 i 6 2` such that fk(i) ∈ {q0}×
{true, false},

• if k > 0, then for all 0 6 i 6 2` such
that fk−1(i) = (q, false) for some q ∈ Q, for
all q ′ ∈ δ(q,L(sk)), there exists 0 6 j 6 2` such
that fk(j) = (q ′, false).

Proof. We prove the three properties by induction on
the length of the paths of G.

Consider any path (sk,fk)k>0. The properties are true
in the initial state (s0,f0) by definition. Assume this
holds at (sk,fk). Consider (sk+1,f ′k,H) such that

(sk,fk) 1 (sk+1,f ′k,H) 2 (sk+1,fk+1),
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so that (sk+1,f ′k,H) is consistent. Observe that by con-
struction, the second and third properties hold when-
ever there are enough empty tracks in f ′k. In f ′k, all
tracks different than Q× {true, false} in fk are set to ∅;
while each track of the form (q,b) ∈Q× {true, false}
is replaced by (q ′,b) for some successor q ′ of q
in A. Thus, |{06 i6 2` | f ′k(i) 6= ∅}|6 `. All properties
then follow from this observation. In fact, in fk+1, the
track (q0, true) or (q0, false) is added and its occur-
rence is unique since q0 there is no edge entering q0
in A. Furthermore, a track (q, false) is added for
each q ∈H unless another track with the same state q
already exists. Then duplicate tracks are removed and
labeled by merged(·). Thus, no state q ∈ Q appears
twice in (sk+1,fk+1).

Theorem A.4 (See Theorem III.5). Let T be a
strongly connected KS, A an NFA encoding a co-
safety property ϕ and G the weighted KS defined as
above. Then, LFmax

T (ϕ) =MPmax
G (Φ) and LFmin

T (ϕ) =

MPmin
G (Φ).

Proof. We prove the following even stronger result:

(a) For each infinite path π in T starting in s0 there
exists an infinite path π ′ in G with π ′ |=Φ and
lrfϕ(π) = mp(π ′).

(b) For each initial infinite path π ′ in G with π ′ |=Φ
there is an infinite path π in T starting in s0 such
that lrfϕ(π) = mp(π ′)

Proof of statement (a).: Consider any infinite path π=
(sk)k>0 of T that starts at s0. We will construct a
uniquely defined path (sk,fk)>0 in G satisfying Φ and
whose mean payoff is exactly lrfϕ(π).

The path follows π in its first component. The only
non-determinism in the choice of the second compo-
nent is in the choice of (q0,b) with b ∈ {true, false}
that is introduced at each step, and in the choice
of a successor for each (q, true). In fact, the rest
of the components are uniquely determined by the
construction.

We are going to construct a path (sk,f ′k)k>0 with an
additional information: at each step k, tracks of the
form (q, true) are replaced by (q, true,ρ) where ρ is a
path witnessing that the trace L(sk)L(sk+1) . . . is ac-
cepted by A from state q. The final path (sk,fk)k>0 is
then obtained by removing this additional component.

We define f ′0 by choosing (q0, true,ρ) if and only
if π,0 |= φ, where ρ is some witness accepting path
of A from q0.

Assume that the path is constructed up to step k− 1.
Then f ′k is defined with the following resolution of the
non-determinism.

• We add the track (q0, true,ρ) if π,k |= φ, with ρ
a witness path, and add (q0, false) otherwise.

• For any 0 6 i 6 2` with f ′k−1(i) = (q, true,ρ),
if q ∈ F then ρ is the empty path and f ′k(i) =
∅ (there is no non-determinism to resolve in
this case). Otherwise, let us write ρ = qq ′ρ ′

where q,q ′ are first two states of ρ and ρ ′ is the
rest of the path. We let f ′k(i) = (q ′, true,q ′ρ ′).

This sequence thus constructed never produces incon-
sistent states. This is because all tracks are chosen
according to the satisfaction of the property ϕ at
given position with given witness accepting paths in A.
Now, the mean payoff of (sk,fk)k>0 is obtained as
the average of the number of positions in which a
track (q0, true) is created. This is the case exactly
when ϕ holds from a given position. Thus, the mean
payoff of (sk,fk)k>0 is equal to lrfϕ(π).

It remains to show that (sk,fk)>0 satisfies Φ. Con-
sider any position 0 6 i 6 2`, and any k > 0. Let
us show that (falsei∨mergedi∨Fi∨∅i) is satisfied
at some position l > k. This is clear if fk(i) |=
falsei∨mergedi∨ Fi∨ ∅i, so assume this is not the
case. The only remaining case is fk(i) = (q, true) for
q ∈ Q \ F. Consider the witness path ρ above. By
construction, there is l > k such that either fl(i) ∈
F× {true} or fl(i) ∈ {merged}×N.

Proof of statement (b).: Conversely, consider a
path (sk,fk)>0 of G satisfying Φ. Let π = (sk)k>0
be the corresponding path in T. We will prove that
for all positions k such that fsk contains a track
with (q0, true), π,k |=φ, and for all other positions k,
π,k 6|=φ. This shows that lrfϕ(π) is equal to the mean
payoff of the path (sk,fk)k>0.

We prove a more general statement: for all
states (sk,fk) containing some track (q, true), the
suffix L(π[k...]) has a prefix that is accepted by some
path from q to F in A. We proceed by induction on
the position i of the track containing (q, true), with
06 i6 2`+1.

• Case i = 0. Consider k > 0 such that fk(0) =
(q, true). We claim that there exists k ′ > k and
states ql ∈Q for all k6 l6 k ′ such that fl(i) =
(ql, true), qk=q and qk ′ ∈ F, and qkqk+1 . . .qk ′
is a path of A. In fact, since (sk,fk)k>0 satis-
fies Φ, the track i cannot be of the form (q ′, true)
indefinitely from position k. Moreover, it can
never be of the form (merged, j) since this
would imply j < 0. It cannot be either of the
form (q, false) before visiting some (qf, true)
with qf ∈ F since this is not possible in the
construction. Thus, in order to satisfy Φ, there
must exist such a position k ′ as above. Then
qkqk+1 . . .qk ′ is a path of A by construction
of G.

• Consider i > 0 and k > 0 such that fk(i) =
(q,true). We claim that one of the two conditions
hold:
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1) there exists k ′ > k and states ql ∈ Q for
all k 6 l 6 k ′ such that fl(i) = (ql, true),
qk = q and qk ′ ∈ F, and qkqk+1 . . .qk ′ is
a path of A.

2) or, there exists k ′ > k and states ql ∈Q for
all k6 l6 k ′−1 such that fl(i) = (ql, true),
qk = q and qlql+1 . . .qk ′−1 is a path of A
and fk ′(i) = (merged, j) with some j < i.

The result follows immediately in the first case.
Assume the first case does not hold. By Φ,
there must exist some position k ′ > k satis-
fying (falsei∨mergedi∨Fi∨∅i). Consider the
least such position k ′. By construction, we can-
not have (sk ′ ,fk ′) |= falsei or (sk ′ ,fk ′) |= ∅i
since all tracks of the form Q × {true} are
stopped by some F× {true} or merged×N. The
former does not hold by hypothesis so there
must exist j < i such that fk ′(i) = (merged, j).
By construction, there exists q,q ′ ∈ Q such
that fk ′−1(i) = (q, true) and fk ′(j) = (q, true)
with q ′ ∈ δ(q,L(sk ′−1)). By induction hypoth-
esis there exists a path ρ from q ′ to F along
a prefix of the trace L(sk ′)L(sk ′+1) . . .. Now
if qkqk+1 . . .qk ′−1 denotes the path of A de-
fined by the track i from positions k to k ′− 1,
then qkqk+1 . . .qk ′−1 · ρ is an accepting path
of A on a prefix of L(π[k...]).

Computation of the extremal values

Let us explain the exponential-time algorithm of Corol-
lary III.6 for computing LFmax

T,s (ϕ) and LFmin
T,s(ϕ).

We start by building G which has size |S|(3`+1)2`+1,
which is linear in the size of T and exponential in
that of A. We then compute the strongly connected
components of G and keep those SCCs which contain
at least one accepting state per each Büchi condition
of Φ. In fact, any infinite path satisfying Φ must have
a suffix that belongs to such an SCC. We then use the
algorithm of [28] to compute the cycle that maximizes
the mean payoff in time polynomial in the size of G.
Then, as done in [6], one can build an infinite path by
repeating this cycle, and interleaving an infinite number
of visits to accepting states with frequency that goes
to 0. A detailed construction of this idea is also given
below, in the proof of Theorem A.5.

PSPACE-completeness of the threshold problem

We now turn to the proof of Theorem III.7. Let us first
recall the result:

Theorem A.5 (see Theorem III.7). The threshold
problem “given a KS T, an NFA A and a rational
threshold ϑ, check whether T has an infinite path π
with lrf A(π)> ϑ” is PSPACE-complete.

The polynomial-space upper bound will be shown in
Lemma A.6 and PSPACE-hardness will be shown in
Lemma A.7.

Lemma A.6. Given KS T, co-safety property ϕ de-
scribed by NFA A, and a rational number ϑ, a com-
parison operator D ∈ {>,>,<,6} one can check in
polynomial space whether LFmax

T (ϕ)Dϑ.

Proof. As PSPACE equals NPSPACE (Savitch’s the-
orem) it suffices to provide a non-deterministic poly-
nomially space-bounded procedure to check whether
MPmax

G (Φ)D ϑ. The idea is to use the weighted KS
G, without constructing G explicitly. To simplify the
following argument we concentrate on the case D=>.
The algorithm for strict lower bounds and upper
bounds are similar.

The algorithm starts by guessing a state sG in SG and
checks whether sG is reachable from one of the initial
states in I(s0). This check can be done in polynomial
space. Then, it checks whether

(1) there exists a cycle ξΦ of length 2(2`+ 1)|SG|
containing sG which satisfies each conjunct ofΦ,

(2) there exists a simple cycle ξMP containing sG
with mean payoff of at least ϑ.

The first check can be done in polynomial space by
guessing the path and using a counter up to 2`|SG|,
which can be represented in polynomial space. The
second check can be done similarly by keeping the sum
of the guessed cycle which can also be represented in
polynomial space, since it is bounded by |SG| as all
weights are 0 or 1.

We first show: If the above nondeterministic algo-
rithm returns “yes”, then G has an infinite path ρ
with mp(ρ) > ϑ. This construction follows the more
general results on mean payoff parity games of [14].
Let ξΦ and ξMP denote the two cycles computed
above, the first one satisfying Φ, and the second one
with mean payoff at least ϑ. The path we construct first
reaches sG. From here, it runs in phases alternating
between ξΦ and ξMP. At phase i > 1, it follows 2i

times ξMP and then once ξΦ. This path clearly satis-
fies Φ since the cycle ξΦ is seen infinitely often. Let π
denote the suffix of ρ starting at the first occurrence
of sG. We calculate the mean payoff of π, which
is the same as the mean payoff of ρ. Consider any
prefix π[0...K] of π of length K. Let us write a= |ξΦ|,
b = |ξMP| and avg(π[0...K]) for the average payoff of
the first K states of π, i.e.,

avg(π[0...K]) =
1
K
·
K−1∑
i=0

wgt(π[i]).
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If K> a+2b, then there exists a unique integer i> 0
and some integer r with 06 r < a+2i+1b such that:

K = a+21b+a+22b+ . . .a+2ib+ r
= ia+b(2i+1 −1)+ r

If r < a+b, then:

avg(π[0...K]) >
ϑ(2i+1 −1)

2i+1 −1+(i+1)a+b

If r> a+b, there exists m< 2i+1 such that:

avg(π[0...K]) >
ϑ(m+2i+1 −1)
m+2i+1 −1+ ia

Then, for all ε> 0, there exists Kε such that for all K>
Kε, avg(π[0...K])> ϑ−ε. This yields:

mp(π) = liminf
K→∞ avg(π[0...K]) > ϑ

As the mean payoff of ρ coincides with the mean
payoff of each of its suffixes, we get:

mp(ρ) = mp(π) > ϑ

This also shows that the limit of the average payoffs of
finite prefixes exists, so the limsup and liminf variants
of the mean payoff have also the same value for ρ.

Conversely, assume that there exists an infinite path ρ
of G satisfying Φ, starting in a state of I(s0) and
with mp(ρ)> ϑ. The task is to show that the sketched
nondeterministic algorithm has a computation return-
ing the answer “yes”. Pick some state sG that occurs
infinitely in ρ. Then, sG is reachable from I(s0).
Let us write Φi for the Büchi condition �♦(falsei∨
mergedi ∨ Fi ∨ ∅i). Then, Φ = ∧2`

i=0Φi and ρ has
a fragment that constitutes a cycle in G containing
state sG and satisfying all conjuncts Φi of Φ. We
now sketch how to construct new a cycles ξΦ and
ξMP satisfying the constraints of (1) and (2). For
each i ∈ {0,1, . . . ,2`}, ρ contains a path from sG to
some state ti with ti |=Φi, and a path from ti to sG.
A cycle ξi of length 6 2|SG| containing sG and ti
can then be constructed by concatenating simple paths
from sG to ti and from ti to sG in G. Concatenating the
cycles ξ0,ξ1, . . . ,ξ2` for all conjuncts Φi of Φ yields
the desired cycle ξΦ. Furthermore, it is known that
in mean payoff automata, the maximal mean payoff is
achieved on simple cycles [22]. Thus, the algorithm
has a computation returning the answer “yes”.

Lemma A.7. The threshold problem “given a KS T,
an NFA A and a rational threshold ϑ, decide whether
LFmax

T (ϕ)> ϑ” is PSPACE-hard.

Proof. The PSPACE lower bound follows by a poly-
nomial reduction from the intersection problem for
deterministic finite automata (DFA): given k DFA
D1, . . . ,Dk over the same alphabet Σ, is the intersection

language L(D1)∩ . . .∩L(Dk) nonempty? This prob-
lem is known to be PSPACE-complete [29].

To provide a polynomial reduction from the intersec-
tion problem for DFA, we suppose we are given DFA
D1, . . . ,Dk over some alphabet Σ. W.l.o.g. we may
assume that k > 2 and that the empty word is not
included in any of the languages L(Di). Let Qi be the
state space of Di, `i = |Qi| and ` = `1 · . . .`k. Then,
L(D1)∩ . . .∩L(Dk) is nonempty if and only if there is
a word w∈Σ∗ of length at most ` such that w∈L(Di)
for i= 1, . . . ,k.

Let $1, . . . ,$k,# be pairwise distinct fresh letters (not
contained in Σ), and let Γ = Σ∪ {$1, . . . ,$k,#}.

Given a finite word w=σ1σ2 . . .σn ∈Σ+, let ŵ denote
the word over Σ∪ {#} that arises from w by inserting
(k−1)-times the symbol # after each letter σj. That is,

ŵ = σ1#k−1σ2#k−1 . . .σn#k−1

For i = 1, . . . ,k, one can easily construct in time
O(k2+k · size(Di)) a new DFA Bi over the alphabet
Γ such that:

L(Bi) =
{

$ji $k−1
i+1 . . .$k−1

k ŵ : w ∈ L(Di),16 j < k
}

Furthermore, we can construct in time linear in the
sizes of B1, . . . ,Bk an NFA A over the alphabet Γ with:

L(A) = L(B1)∪ . . .∪L(Bk)∪ {#i : i> 1}

Note that A does not accept the empty word and no
word starting with a letter in Σ. Likewise, we can
construct in time polynomial in k a strongly connected
KS T with the following states:

• si,j for i= 1, . . . ,k and j= 1, . . . ,k−1,
• t1, . . . ,tk−1 and
• uσ for each symbol σ ∈ Σ.

We treat the symbols in Γ as atomic propositions and
identify the singletons {γ} with γ, where γ ranges over
all symbols of the alphabet Γ . The labeling function of
T is then given by:

L(si,j) = $i, L(tj) = # and L(uσ) = σ.

The transition relation of T is depicted in Figure 4.

Thus, the words generated by T are the substrings of
the infinite words y1y2y3 . . . where each word yi has
the form

$k−1
1 $k−1

2 . . .$k−1
k ŵ

for some w ∈ Σ+. Let

ϑ=
k(k−1)+(k−1)`
k(k−1)+k`

Clearly, T,A,ϑ can be constructed in time polynomial
in the size of the DFA D1, . . . ,Dk. It remains to show
that T has an infinite path π with long-run frequency
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s1,1 s1,2 . . . s1,k−1

s2,1 s2,2 . . . s2,k−1

sk,1 sk,2 . . . sk,k−1

uσ uσ ′ . . .

t1 t2 . . . tk−1

. . .

Fig. 4. The Kripke structure T in the reduction of Theorem III.7.

lrf A(π) at least ϑ if and only if the intersection
language of the Di’s is nonempty.

It remains to prove that the following equivalence: T
has an infinite path π with long-run frequency lrf A(π)
at least ϑ if and only if the intersection language of
the Di’s is nonempty.

Let us recall that, formally, the relation of T consists
of the following transitions:

si,1→ si,2→ . . .→ si,k−1 for i= 1, . . . ,k
si,k−1→ si+1,1 for i= 1, . . . ,k−1
sk,k−1→ uσ→ t1 for σ ∈ Σ
t1→ t2→ . . .→ tk−1
tk−1→ s1,1 and tk−1→ uσ for σ ∈ Σ

Suppose first that there is some word w∈ Σ∗ accepted
by each of the DFSs D1, . . . ,Dk. As stated before, we
then can safely assume that |w| 6 `. T has a cycle ξ
generating the word v= $k−1

1 $k−1
2 . . .$k−1

k ŵ. We then
have:

|v| = k(k−1)+k|w|

The word v contains exactly k(k−1)+ (k−1)|w| po-
sitions from which a word accepted by A starts. This
follows from the following two observations:

• The suffixes $ji$
k−1
i+1 . . .$k−1

k ŵ of v are accepted
by Bi, and therefore by A (for j= 1, . . . ,k−1).

• ŵ contains exactly (k−1) · |w| positions from
which a subword contained in #+ starts.

Thus, the long-run frequency of the infinite path ξω

that repeats this cycle ad infinity is:

lrf A(ξ
ω) = f(|w|)

where f : R>0→ R>0 is the following function:

f(x) =
k(k−1)+(k−1)x
k(k−1)+kx

Function f is monotonically decreasing.1 Therefore,
f(|w|) > f(`) As f(`) = ϑ, we conclude that T has an
infinite path with long-run frequency at least ϑ.

We assume now that T has an infinite path π with
long-run frequency at least ϑ. We first observe that π
must visit s1,1 infinitely often as otherwise π would
have an infinite suffix consisting of t- and u-states, in
which case the long-run frequency would be smaller
or equal than (k−1)/k, and therefore strictly smaller
than ϑ. Suppose by contradiction L(D1)∩ . . .L(Dk) is
empty. Then, the average weight obtained by each cy-
cle s1,1s1,2 . . .s1,k−1 . . .sk,1sk,2 . . .sk,k−1$s1,1 where
$ consists of t- and u-states contained in π in T is
less or equal

(k−1)2 +(k−1)y
k(k−1)+ky

=
k−1
k

where y is the number of u-states in $, in which
case the number of t-states in $ is (k−1)y. But then
again, the long-run frequency of π would be bounded
by (k−1)/k, and therefore strictly smaller than ϑ.
Contradiction. We conclude that L(D1) ∩ . . .L(Dk)
must be nonempty if T has an infinite path with long-
run frequency at least ϑ.

Qualitative decision problems

Lemma A.8. Given a state s of a KS T and NFA A,
the problem to check whether there is an infinite path π
of T starting in s with

(a) lrf A(π)> 0 is in P,
(b) lrf A(π)< 1 is PSPACE-hard,
(c) lrf A(π) = 0 is NP-hard,
(d) lrf A(π) = 1 is NP-hard.

Proof. We first consider statement (a). As stated be-
fore, it suffices to consider the case where T is strongly
connected, in which case the starting state s is irrel-
evant. We build the synchronous product T⊗A and
treat it as an NFA where S×Q0 is the set of initial
states and S×F the set of final states. We now show:
T has an infinite path π with lrf A(π) > 0 if and only
if the language of T⊗A is nonempty.

• For the implication “⇐=” we pick a finite word
w over 2AP that is accepted by T ⊗ A. As
Q0 ∩ F = ∅, w is non-empty. Pick an accept-
ing run (s0,q0)(s1,q1) . . .(sn,qn) for w in T⊗
A. We then a pick finite path t0 t1 . . .tm from
sn = t0 to s0 = tm, and regard the infinite path
π arising by the infinite repetition of the cy-
cle s0 s1 . . .sn t1 . . .tm. Obviously, we then have
lrf A(π)> 0.

1Each rational function h(x)= (a+cx)/(b+dx) with cb<
ad is decreasing. This is a consequence of the fact the the first
derivative is strictly negative. Note that h ′(x)= (cb−ad)/(b+
dx)2, which is strictly negative if cb<ad.
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• For the implication “=⇒”, we suppose that we are
given an infinite path π with lrf A(π) > 0. Then,
there is a pair (i, j) of integers with i < j such that
the word induced by the path fragment π[i...j] is
accepted by A. This path fragment can be lifted
to an accepting run in T⊗A. Thus, the language
of T⊗A is nonempty.

We prove statement (b) via a polynomial reduction
from the universality of finite automata, which is
known to be PSPACE-complete [33], to the problem
that takes as input a KS T and an NFA A and asks
whether lrf A(π) = 1 for all infinite paths π in T.
Because PSPACE is closed under complement, this
implies that checking the existence of an infinite path π
such that lrf A(π)< 1 is PSPACE-hard. For the reduc-
tion from the universality problem for NFA we may
restrict to NFA over the alphabet Σ = 2AP for some
fixed set AP of atomic propositions.

Given an NFA A= (Q,Σ,δ,Q0,F), we construct a new
NFA B over the alphabet Σ′=Σ∪{#} for a new symbol
{#} as follows. The states of B are Q together with
two new states sinit and acc. The transitions in B are
given by δ and a new #-transition from sinit to each
state q ∈ Q0, a new #-transition from each state f ∈
F to acc, and a new transition from sinit to acc for
each symbol σ ∈ Σ. The only accepting state in B is
acc and the only initial state is sinit. So, we get that
L(B) = Σ∪ {#w#|w ∈ L(A)}.

We define a KS T with state space S = {sσ : σ ∈ Σ′},
the obvious labeling function L(sσ) = σ, and with
transitions between all pairs of states. Thus, all words
on Σ′ can be generated by T.

Assume A is universal. Consider some infinite path π
of T. If π contains only finitely many #s then lrf B(π) =
1, as all suffixes not starting with # have a prefix
accepted by B in one step. If π contains infinitely many
#s, then lrf B(π) = 1 as all suffixes not starting with #
have a prefix of length 1 which is accepted by B and
all suffixes starting with # have a prefix of the form
#w# for some word w. As A is universal, w ∈ L(A)
and hence #w# ∈ L(B).

Conversely, assume that there is a word w 6∈ L(A).
Then, the path π = (#w)ω in T satisfies lrf B(π) =
|w|

|w|+1 < 1. As π starts with #, the only prefix that could
be accepted by B is #w#. But this word is rejected by
construction. So, every |w|+ 1th suffix of π has no
prefix accepted by B.

Hence, we showed that there is a path π in T with
lrf B(π)< 1 if and only if A is non-universal.

For the proof of statement (c), we describe a poly-
nomial reduction from 3SAT. Let ψ = c1 ∨ . . .∨ cm
be a 3CNF formula with m clauses using n Boolean
variables, say x1, . . . ,xn. Let T be a KS containing
one state per clause ci, and for each ci, a fresh state

per literal of ci. The initial state is c1. At state ci,
there are three successors which are the literals of ci,
which all go directly to ci+1. We create an additional
state cm+1 = ⊥ whose only outgoing transition goes
to c1. The automaton A reads literals and guesses any
contradiction in the input. It accepts iff for some i,
the word contains both xi and ¬xi. Then, if ψ is
satisfiable, there exists an infinite path π in T such
that lrf A(π) = 0. If ψ is not satisfiable, for all π in T,
at each cycle, some xi and ¬xi must be read. Thus,
lrf A(π)>

1
n+m+1 .

The proof of statement (d) is also a reduction from
3SAT and uses the same KS T as in the previous
construction. Consider 3CNF formula ψ = c1 ∨ . . .∨
cm over variables x1, . . . ,xn, and let us write ci =
li1 ∨ l

i
2 ∨ l

i
3 where lik are literals. Let L denote the

set of all literals, and C = {c1, . . . ,cm}. We define A

as follows. From the initial state, one goes to an
accepting sink state by reading any letter of L∪ {⊥}.
By reading ci ∈ C, one goes to sci from which the
automaton accepts when ⊥ is read iff one of the literals
of ci was seen in the mean time, but not its negation.
That is, if none of the literals of ci are seen, or
some literal lik and its negation are both seen, then
the automaton ends in a rejecting sink state. This part
of the automaton can be constructed using 3 extra bits
in order to store which literals have been seen.

If ψ is satisfiable, then there is a word w =
c1l

1
i1
c2l

2
i2

. . .cmlmim⊥ where lkik ∈ ck for each k, and
such that for all k,k ′, lkik 6= ¬lk

′
ik ′

. Consider the
word π = wω. The property A is satisfied from all
positions. This is trivial from positions containing X∪
{⊥}. At any other position containing ci, the letter is
followed by an actual literal of ci, and the rest of the
word does not contain its negation. Thus, lrf A(π) = 1.

Assume now that ψ is not satisfiable. Consider any
word π of T which can be written as π=w1⊥w2⊥ . . .
where each wi has the form c1l1c2l2 . . .cmlm
with lk ∈ ck for each k. Since ψ is not satisfiable,
each wi must contain lj and lk with lj = ¬lk. That
is, at least once every m+n+1 positions, the property
is violated, Thus, lrf A(π)< 1.

C. Proofs for the probabilistic case

Additional notations: End components (ECs) have
been introduced in Section II as sets of state-action
pairs where the induced graph is strongly connected.
Occasionally, we shall use a representation of an end
component E as a pair (E,A) where E is a set of
states and A : E → Act, namely E = {s ∈ S : ∃α ∈
Act.(s,α) ∈ E} and A(s) = {α ∈ Act : (s,α) ∈ E}. With
this representation is mind and identifying E with E,
we sometimes use notations like s ∈ E or T ∩E for
s ∈ S and T ⊆ S.
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If S is a scheduler and π= s0α0s1α1 . . . a path then π
is said to be a S-path if S(s0α0 . . .αn−1sn)(αn)> 0
for all n > 0. Many proofs will rely on de Alfaro’s
observation [19] stating that for each scheduler of a
(finite-state) MDP, the limit of almost all infinite S-
paths constitutes an end component. Here, the limit
Lim(π) of an infinite path π denotes the set of state-
action pairs that occur infinitely often in π.

Efficiently solvable instances of the lrp-problem

Theorem A.9 (see Theorem IV.3). The val-
ues LPmax

M,s(ϕ) and LPmin
M,s(ϕ) are computable in

polynomial-time if ϕ is a condition of one the following
types:

• reachability ♦b,
• invariance �b,

• generalized Rabin
n∧
i=1

`i∨
j=1

(�♦bi,j∧♦�ai,j)

• or Streett
n∧
i=1

(�♦ai,j→�♦bi,j).

In all these cases, optimal FMD-scheduler exist. More-
over, optimal MD-schedulers exist for reachability,
invariances, Büchi and co-Büchi conditions.

Proof. We provide the argument for LPmax
M,s(ϕ). The

argument for LPmin
M,s(ϕ) is analogous and omitted here.

As stated above, we may assume that M is strongly
connected.

It is well-known [2], [12], [19] that for all properties
listed in Theorem IV.3 there is an FMD-scheduler S
that maximizes the probability for ϕ from every visited
state in the following sense:

Pr
S↑π[0...i]
M,π[i]

(ϕ) = Prmax
M,π[i]

(ϕ)

for each infinite S-path π and each position i∈N. For
reachability, invariances, Büchi and co-Büchi condi-
tions, we may even suppose that S is an MD-scheduler
with a single BSCC B.

If ϕ is a reachability, generalized Rabin or Streett
condition then Prmax

M,s(ϕ) = Prmax
M,t(ϕ) for all states s,t

in M. Moreover, this value is either 0 or 1. But then
S obviously achieves the maximal long-run probability
from every state.

The states in M can have different maximal proba-
bilities for invariances ϕ = �b. However, for invari-
ances we either have maxs∈SPrmax

M,s(ϕ) = 0, in which
case LPmax

M,s(ϕ) = 0 for all states s, or the unique
BSCC B of S consists of b-states. In the latter case,
PrSM,s(�b) = Prmax

M,s(�b) = 1 for all states s in B. Let
now T be the following MD-scheduler:

• From the states not in E, T mimics an MD-
scheduler maximizing the probability to reach B

(which is 1 as M is strongly connected).

• For the state inside B, T behaves as S.

We then have LPT
M,s(�b) = 1 for all states s in M,

which is obviously maximal.

Qualitative lrp-problems

Recall that the task of the qualitative lrp-problems is
to decide the existence of a scheduler S such that
LPS

M,s(ϕ) is positive, equals 1, is strictly less than
1 or equals 0.

Lemma A.10. The four qualitative lrp-problems for
MDPs and until properties are decidable in polynomial
time. Moreover, if M is strongly connected and s a state
of M then:

LPmax
M (aUb) = 1 iff ∃S.LPS

M,s(ϕ) = 1
LPmin

M (aUb) = 0 iff ∃S.LPS
M,s(ϕ) = 0

Proof. Let ϕ = aUb and M be a strongly connected
MDP. Polynomial-time decidability of the four qual-
itative lrp-problems is a direct consequence of the
following observations:

(a) ∃S.LPS
M,s(ϕ)> 0 iff B 6=∅

(b) ∃S.LPS
M,s(ϕ) = 1 iff M has a (A∪B)-EC E

with E ∩ B 6= ∅ or M has an A-EC E with
Prmax

E (ϕ) = 1 (or both).
(c) ∃S.LPS

M,s(ϕ)< 1 iff M has an A-EC or C 6=∅
(d) ∃S.LPS

M,s(ϕ) = 0 iff M has a (A∪C)-EC

Statement (a) is obvious. For the proof of statement
(b), we show the equivalence of the following three
statements:

(i) LPmax
M (ϕ) = 1

(ii) ∃S.LPS
M,s(ϕ) = 1

(iii) M has a (A∪B)-EC E with E∩B 6=∅ or M has
an A-EC E with Prmax

E (ϕ) = 1 (or both).

“(iii) =⇒ (ii)”: The claim is obvious if M has a
(A∪B)-EC E with E∩B 6= ∅. Suppose now that M
has an A-EC E with Prmax

E (ϕ) = 1. An infinite-memory
scheduler with long-run probability 1 can be obtained
by using the A-EC E to have longer and longer portions
of A-states, before satisfying almost-surely aUb (by
following an MD-scheduler maximizing the probability
for aUb) and returning to E from the reached B-
state (by following an MD-scheduler maximizing the
probability for reaching E from every state in M).

“(i) =⇒ (iii)”: by contradiction. Suppose that none of
the two alternative condition holds. Then, C-states are
seen “often” on average in the following sense: if n
denotes the number of states then Prmin

M,s(♦
6nC) > 0

for every state s. As Prmax
M,t(aUb) = 0 for each C-state

t, this yields

LPS
M,s(aUb) 6

n−1
n

< 1
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for each scheduler S. Hence, LPmax
M (aUb) 6

(n−1)/n < 1.

The implication “(ii) =⇒ (i)” is trivial.

The proofs for statements (c) and (d) and the equiv-
alence of LPmin

M (aUb) = 0 and the existene of a
scheduler S with LPS

M,s(aUb) = 0 are similar and
omitted here.

Duality of minimal and maximal long-run probabilities

The following lemma essentially shows that minimiz-
ing the long-run probability for aUb is dual to the
task to maximize the long-run probability for AUC.
An exception is the case where M has A-ECs, in which
case the minimal lrp-problem can be answered directly.

Lemma A.11 (Min-lrp via max-lrp). Suppose M is a
strongly connected and let A,B,C as above. If M has
an A-EC then LPmin

M (aUb) = 0. Otherwise, i.e., if M
has no A-EC, then LPmin

M (aUb) = 1−LPmax
M (AUC).

Proof. Suppose first that M has an A-EC E. For each
state t in E, let A(t) = {α ∈ Act : (s,α) ∈ E}. Consider
an MD-scheduler S maximizing the probability to
reach E from every state s outside E and which
selects only actions in A(t) for every state t in E.
Then, PrSM,s(♦�A) = 1 for all states s, and therefore
PrSM,s(AUB) = 0 (as A and B are disjoint). But then
LPS

M,s(aUb) = LPS
M,s(AUB) = 0 for each state s.

This yields LPmin
M (aUb) = 0.

Suppose now that there are no A-ECs. Then, for each
scheduler S and each state s:

PrSM,s(aUb) = PrSM,s(AUB) = 1−PrSM,s(AUC)

This yields LPmin
M (aUb) = 1−LPmax

M (AUC).

Finite-memory schedulers for aUb

We now show that the maximal long-run probabili-
ties for until properties can be approximated by FM-
schedulers.

As before, we suppose that M is a strongly connected
MDP with state space S. Furthermore, we may safely
assume that C 6=∅ as otherwise all states either belong
to A or B, in which case either LPmax

M (aUb)= 0 if B=
∅ or, if B 6=∅, then LPmax

M (aUb) = LPS
M(aUb) = 1

for any MD-scheduler S that maximizes the probabil-
ity for reaching B.

Lemma A.12 (see Lemma IV.6). For each scheduler
T for M, each ε > 0 and each state s of M, there is
a FM-scheduler S for M such that:

LPS
M,s(aUb) > LPT

M,s(aUb)−ε

Proof. If S is a scheduler then briefly we write pSs
instead of PrSM,s(AUB).

By Fatou’s lemma, we have:

LPS
M,s(aUb) = ET

M,s

(
liminf
n→∞ 1

n+1

n∑
i=0

p
T↑π[0...i]
π[i]

)

6 liminf
n→∞ ET

M,s

(
1
n+1

n∑
i=0

p
T↑π[0...i]
π[i]

)
So, there exists k0 ∈ N such that for all k> k0:

ET
M,s

(
1
k+1

k∑
i=0

p
T↑π[0...i]
π[i]

)
> LPT

M,s(aUb)−
ε

2

Let Us be the following FM-scheduler with two modes.
If the current state is in A, it starts in the first mode,
in which it behaves like an MD-scheduler maximiz-
ing the probability of aUb. As soon as a state in
B∪C has been reached, scheduler Us operates in the
second mode, in which it memorylessly minimizes
the expected number of steps until reaching s. Let
ft,s =Emin

M,t(“steps until s”) denote the expected num-
ber of steps this scheduler Us needs to reach s in
the second mode starting from state t. We then define
fs = maxt∈S ft,s and f= maxs∈S fs.

We now construct an FM-scheduler S satisfying the
claim of the lemma. First, choose a natural number k
with k> k0 and k+1> 2fs

ε . The behavior of scheduler
S is as follows. In its first mode, it starts in s and
behaves like T in the first k steps. Then, it switches to
the second mode and behaves like Us until it reaches
s (in the second mode of Us). Afterwards, it switches
back to the first mode.

As Us maximizes the probability of aUb whenever it
starts in a state in A, we obtain:

1
k+1

·
k∑
i=0

p
T↑π[0...i]
π[i]

6
1
k+1

·
k∑
i=0

p
S↑π[0...i]
π[i]

for all paths π. Furthermore, the expected number of
steps which S takes to follow T for k+1 steps and to
return to s via Us is at most k+1+fs.

Expressing the long-run probability of S as a quotient,
we obtain:

LPS
M,s(aUb)

>
p
T↑π[0...0]
π[0] + . . .+p

T↑π[0...k]
π[k]

k+1+ fs

>
p
T↑π[0...0]
π[0] + . . .+p

T↑π[0...k]
π[k]

(k+1) · (1+ε/2)

>
p
T↑π[0...0]
π[0] + . . .+p

T↑π[0...k]
π[k]

k+1
· (1−ε/2)

> (LPT
M,s(aUb)−ε/2) · (1−ε/2)
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by the choice of k. Using the fact that LPT
M,s(aUb)

is bounded by 1 we obtain:

LPS
M,s(aUb)

> (LPT
M,s(aUb)−ε/2) · (1−ε/2)

> LPT
M,s(aUb)−ε

This completes the proof of Lemma A.12 and yields
the statement of Lemma IV.6.

Saturation point

We present the proof of Lemma IV.7. Let us first recall
the relevant notations. The value K has been defined in
Section IV of the main paper as max{N,de/δe} where
N= |A| and where e and δ are as follows.

The value δ has been defined δ = mins∈A δs where
δs denotes the minimal difference between pmax

s =
Prmax

M,s(aUb) and the values ps,α =
∑
t∈SP(s,α,t) ·

pmax
t for α∈Act(s)\Actmax(s), and δs=∞ if Act(s)=

Actmax(s). In the special case where δs =∞ for all
states s ∈A, δ is defined to be 1.

For the definition of e we considered the unfolded
MDP MN (where again N = |A|) and defined e as
the maximum of the values

et,s = Emin
MN,tN(“steps until sN”)

Here, sN = s for s ∈ B ∪ C and sN is any copy
(s, i) of state s in MN that is reachable from some
(B∪C)-state in MN. As N= |A|, with M also MN is
strongly connected. This ensures the well-definedness
(finiteness) of the values et,s and the existence of
an MD-scheduler RN,s for MN that minimizes the
expected number of steps to sN from every state tN.
This MD-scheduler RN,s for MN can be viewed as
an FMD-scheduler for M. We then have:

et,s > ERN,s
M,t (“steps until s”)

for all states s,t ∈ S. Moreover, RN,s enjoys the
property that PrRN,s↑$

M,t (aUb) = pmax
t for each RN,s-

path $ that has a suffix consisting of N or more
A-states where t = last($). In particular, RN,s only
schedules actions in Actmax(·) when having generated
a path that ends with a suffix consisting of N or more
A-states.

Lemma A.13 (see Lemma IV.7). Suppose M has no
(A∪B)-EC containing at least one B-state. Then, for
each FM-scheduler T, there is a scheduler S∈ FM(K)
with LPS

M(aUb) > maxs∈SLPT
M,s(aUb).

Proof. Let T be an FM-scheduler for M with modes
(memory cells) in the finite set X. Let CT denote the
Markov chain induced by T. We can think of the states
in CT as pairs (s,x) consisting of a state s in M and
a mode x ∈ X. We may assume w.l.o.g. that CT has

a single BSCC, say BT. This yields that all states of
CT have the same long-run probability for aUb. Let
us simply write LPT

M(aUb) for this value.

Given a state s = (s,x) in CT, we say s is an A-state
if s ∈ A. The notations B-state and C-state have the
analogous meaning. We suppose that all A-states of
CT are labeled with a, while the B-states are labeled
with b.

If BT consists of (A∪C)-states then LPT
M(aUb) = 0

and the claim is trivial as we can deal with any FM(K)-
scheduler.

Suppose now that BT contains at least one B-state.
Then, almost all T-paths visit infinitely often some B-
state and infinitely often some C-state.

We now explain how to modify T’s decision for gener-
ating a scheduler in FM(K) with the desired property.
Our procedure works by induction on the number kT

of (B∪C)-states s = (s,x) in BT where

PrBT,s(©(AU>KDT))> 0

Here, DT denotes the set of A-states t = (t,y) in the
BSCC BT where T(t)(α) > 0 for some action α /∈
Actmax(t).

If kT = 0 then for every path $ = s0α0 . . .αn−1sn
in BT of length n > K where all but the first state
are A-states, the states sK,sK+1, . . . ,sn do not belong
to DT. That is, T schedules only actions in Actmax

for these states. But then the probability for aUb in
BT from each of the states si = (si,xi) with i > K
equals pmax

si
.2 This implies that if kT = 0 then T is an

FM(K)-scheduler and we can deal with S= T.

Suppose now that kT > 1. We show how to transform
T into a new FM-scheduler S with a single BSCC
such that LPS

M(aUb)> LPT
M(aUb) and kS < kT.

Given states s = (s,x) and t = (t,y) in BT, where s
is a (B∪C)-state and t an A-state, let Γs,t denote the
set of of finite T-paths $= s0α0 . . .αn−1sn such that

• n> K,
• s0 = s, sn = t,
• s1, . . . ,sn are A-states, and
• T(sn)(α)> 0 for some action α /∈ Actmax(t).

Let Πs,t denote the set of paths $ ∈ Γs,t such that no
proper prefix of $ belongs to Γs,t, and let Πs denote
the union of the sets Πs,t.

As kT is positive, we can pick some (B∪C)-state s =
(s,x) in BT where Πs is nonempty.

The definition of FM-scheduler S is as follows. Sched-
uler S operates in two phases. Its first phase starts in

2For general MDPs, schedulers that only select actions in Actmax

might not achieve the maximal probability for aUb. This, however,
is only possible if the schedulers under consideration realizeA-ECs.
As BT is a BSCC with at least one B-state, this case does not apply
to scheduler T.
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s = (s,x) and uses additional memory cells to keep
track of the number of consecutive A-states that have
been traversed since the last visit of s. More precisely,
if S has generated the path s0 s1 . . .si where i 6 K,
s0 =s and s1, . . . ,si are A-states then the memory cells
encode the counter value i. As long as the counter
value is smaller than K or if a B∪C-state has been
reached along a path where the counter value is always
smaller than K, scheduler S just behaves like T.
As soon as the counter value equals K, scheduler S
switches to the second phase and behaves as scheduler
RN,s. More precisely, if S’s current state t in M

belongs to A then S mimics the behavior of RN,s
from state (t,>). Thus, by following RN,s’s decisions,
S will only choose actions in Actmax until A is left.
As soon as state s is reached in S’s second phase (this
will happen with probability 1 as RN,s minimizes the
expected number of steps to s = sN from every state
in the strongly connected MDP MN), S switches back
to the first phase and restarts to mimic T from state s
in mode x, i.e., from state s in BT. For all states that
are not reachable from s in this way, S behaves as T.

As T has a single BSCC, so does S, although the
BSCC BS induced by S can be different from BT.
As s belongs to both BT and BS, s is visited infinitely
often almost surely with finite expected return time
under both schedulers S and T.

Let us first observe that we indeed have kS < kT.
This is thanks to the fact that (1) RN,s maximizes the
probability for aUb whenever N or more consecutive
A-states have been visited, (2) K > N and (3) the
reference state s is not an A-state. Thus, for each
(B∪C)-state u visisted by RN,s in the return (second)
phase of S we have:

PrBS,u(©(AU>KDS)) = 0

Hence, whenever u is (B ∪ C)-state in BS where
PrBS,u(©(AU>KDS)) is positive then

• u 6= s,
• u also belongs to BT and
• the S-paths from u satisfying©(AU>KDS) are

also T-paths and satisfy ©(AU>KDT).

The last item yields PrBT,u(©(AU>KDT))> 0. This
completes the proof that kS is smaller than kT.

We now show that LPS
M(aUb) > LPT

M(aUb). To
simplify the calculations, we present the proof for the
case where Πs is a singleton, say Πs = {$}.

Furthermore, let n be the length of $ (then n > K)
and t = (t,y) = last($). Again, to simplify the cal-
culations, let us suppose that there is a single action
α ∈ Act(t) \ Actmax(t) that T schedules for t with

positive probability p.3 So,

p = T(t)(α) > 0

(Note that p= 1 if T is a deterministic FM-scheduler.)

The long run probabilities of the two schedulers S and
T can be expressed as follows.

Given a state u in BT, let ensTu,s be the expected
number of steps from u to s under T (via paths from
u to s of length at least 1 where all intermediate states
are different from s). Let eapTu,s denote the expected
accumulated probability for aUb that T accumulates
during this period. So, ensTs,s can be understood as the
expected return time from and to s under T. Then:

LPT
M(aUb) =

eapTs,s

ensTs,s
(†)

For the scheduler S we express LPS
M(aUb) as the

fraction of the expected accumulated probability along
return paths and the expected return time from s to s
as well:

LPS
M(aUb) =

eapSs,s

ensSs,s

To provide an upper bound for ensSs,s and a lower
bound for eapSs,s, we need several auxiliary notations.

Recall that et,s is the expected number of steps that
RN,s needs from tN to sN. Hence, et,s is an upper
bound for the expected number of steps ensSt,s that S
needs from state t = last($) to the reference state s.
The value e has been defined as the maximum of the
values et,s. Hence, we obtain:

e > et,s > ensSt,s

Let ensTt,α,s denote the the expected number of steps
that T needs from t to s, under the assumption that
action α is scheduled in t (which happens with prob-
ability p). So, if (u1,z1), . . . ,(u`,z`) denote the α-
successors of t in BT then:

ensTt,α,s = 1+
∑̀
i=1

P(t,α,ui) · ensT(ui,zi),s

Similarly, we define:

eapTt,α,s = PrTt (aUb)+
∑̀
i=1

P(t,α,ui) · eapT(ui,zi),s

For 06 i6 n, let ℘[0...i] denote the probability under
T for generating the path fragment $[0...i] from state
s in mode x. So, ℘[0...n] is the probability under T for
generating the full path $ from s.

3At the end of the proof, we briefly explain how to treat the
general case where Πs is a (prefix-free) countable set of paths, for
which T can schedule multiple actions not in Actmax with positive
probability.
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For the expected number of steps ensSs,s that S needs
from s to s along paths of length at least 1, we get:

ensSs,s 6 ensTs,s+℘[0...n] ·p · (e− ensTt,α,s) (*)

Proof of (*): Let us first observe that ensSs,s can be
written as an infinite sum:

ensSs,s =
∑
ζ∈Ξ

PrS(ζ) · |ζ|

where Ξ denotes the set of all finite paths ζ that start
in s and end in s, and none of the intermediate states
equals s.4

Just to simplify the notations, let us suppose that RN,s
schedules an action β ∈ Actmax(t) for (t,>) such that
T(t)(β) = 0. (This is not a proper resriction as we may
extend the action alphabet of M by a fresh action name
for RN,s’s decision for (t,>).)
Let now Ξ0 denote the set of paths ζ in Ξ such that
either $ is not a prefix of ζ or ζ has the form $γζ ′

where γ is an action different from α and β. Then, all
S-paths ζ∈Ξ0 are also T-paths with PrT(ζ) = PrS(ζ),
and vice versa, each T-path ζ ∈ Ξ0 is also a S-path.

Let now ΞS denote the set of S-paths in Ξ\Ξ0. Then,
all paths ζ ∈ Ξ0 have the form $βζ ′. Let ΞT denote
the analogously defined set for scheduler T. That is,
ΞT consists of all finite T-paths ζ from s to s where no
intermediate state equals s and where ζ has the form
$αζ ′. Then, we get:

ensSs,s− ensTs,s =
∑
ζ∈ΞS

PrS(ζ) · |ζ| −
∑
ζ∈ΞT

PrT(ζ) · |ζ|

We now have (recall t = last($), PrS($) = PrT($) =
℘[0...n] and T(t)(α) = p):∑
ζ∈ΞS

PrS(ζ) = PrS($) ·T(t)(α) = ℘[0...n] ·p

Each path in ΞS has the form $βζ ′ where tβζ ′ can
be viewed as a RN,s-path. Thus, the expected number
of steps from t to s under S is bounded by the expected
number of steps from tN to sN under RN,s, which
again is bounded by e. Using n= |$|, we obtain:∑

ζ∈ΞS
PrS(ζ) · |ζ| 6 ℘[0...n] ·p · (n+e)

Each path ζ ∈ ΞT has a prefix of the form $α(ui,zi)
for some i ∈ {1, . . . ,`}. Hence:∑

ζ∈ΞT
PrT(ζ) · |ζ| = PrT($) ·p · (n+ensTt,α,s)

As PrT($) = PrS($) = ℘[0...n] we conclude:

ensSs,s− ensTs,s > ℘[0...n] ·p · (e− ensTt,α,s)

4Here, PrS(ζ) stands for the probability for S to generate ζ
from s. So, formally, PrS(ζ) equals the probability measure of the
cylinder set spanned by ζ under S.

This complete the proof of (*).

The next goal is to provide a lower bound for the
expected accumulated probability eapSs,s. The claim is:

eapSs,s > eapTs,s+℘[0...n] ·p · (e− eapTt,α,s) (**)

Proof of (**). Let Ξ be as in the proof of (*) and let
ppref(·) denote the set of proper prefixes of the paths
in (·). Furthermore, we write PrSlast(ζ)(aUb) for the
probability for aUb in the Markov chain induced by
S from state last(ζ).

Then, eapSs,s can be written as an infinite sum:

eapSs,s =
∑
π∈Ξ

PrS(π) ·
∑

ζ∈ppref(π)

PrSlast(ζ)(aUb)

=
∑

ζ∈ppref(Ξ)

PrSlast(ζ)(aUb) ·
∑
π∈Ξ s.t.
ζ∈ ppref(π)

PrS(π)

=
∑

ζ∈ppref(Ξ)

PrS(ζ) ·PrSlast(ζ)(aUb)

We deal here with the proper prefixes of the paths in Ξ
to avoid that the reference state s, which is the starting
and end state of the paths in Ξ, is considered twice
in the sums for the accumulated weight (probability
values) of the paths π ∈ Ξ.

The analogous formula holds for T. Let Ξ0, ΞS and
ΞT be defined as in the proof of (*). For the paths ζ
that are prefixes of some path in Ξ0, but not a prefix
of $, we have PrS(ζ) = PrT(ζ) and PrSlast(ζ)(aUb) =
PrTlast(ζ)(aUb).

Thus, the difference between eapSs,s and eapTs,s is:

∑
ζ∈ppref(ΞS)

PrS(ζ) ·PrSlast(ζ)(aUb)

−
∑

ζ∈ppref(ΞT)

PrT(ζ) ·PrTlast(ζ)(aUb)

The prefixes $[0...i] of $ are contained in both
sets ppref(ΞS) and ppref(ΞT). These have the same
probability under S and T (namely ℘[0...i]) and for
i= 1, . . . ,n:

PrS$[i]
(aUb)−PrT$[i]

(aUb)

> ℘[i...n] ·p · (pmax
t −pt,α)

Here, we write ℘[i...n] for the probability under T or
S for generating the path fragment $[i...n] from state
$[i], and as before pt,α =

∑
uP(t,α,u) ·pmax

u .

With pref($) denoting the set of all prefixes of $
(including $) and using that first($) = s is a (B∪C)-
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state, we get: ∑
ζ∈pref($)

PrS(ζ) ·PrSlast(ζ)(aUb)

−
∑

ζ∈pref($)

PrT(ζ) ·PrTlast(ζ)(aUb)

=

n∑
i=1

℘[0...i] ·
(

PrS$[i]
(aUb)−PrT$[i]

(aUb)
)

>
n∑
i=1

℘[0...i] ·℘[i...n] ·p · (pmax
t −pt,α)

> n ·℘[0...n] ·p ·δ

where we used ℘[0...n] = ℘[0...i] ·℘[i...n] and

pmax
t −pt,α > δ

(by definition of δ and as α /∈ Actmax(t)).

Furthermore, the T-paths ζ ∈ ppref(ΞT) that do not
belong to pref($) are extensions of $ of the form
$αζ ′. Their cumulative eap-value is:∑
ζ∈ ppref(ΞT)
ζ /∈ pref($)

PrT(ζ) ·PrTlast(ζ) = PrT($) ·p · eapTt,α,s

Using the fact that PrT($) equals ℘[0...n] and that∑
ζ∈ppref(ΞS)

PrS(ζ) ·PrSlast(ζ) >
∑

ζ∈pref($)

PrS(ζ) ·PrSlast(ζ)

we obtain:

eapSs,s− eapTs,s

> n ·℘[0...n] ·p ·δ−℘[0...n] ·p · eapTt,α,s

= ℘[0...n] ·p · (n ·δ− eapTt,α,s)

We have n>K (as $ is a path of Πs and by definition
of Πs). Moreover, K ·δ > e (by the choice of K). We
conclude:

n ·δ> e

and therefore:

eapSs,s− eapTs,s > ℘[0...n] ·p · (e− eapTt,α,s)

This completes the proof of (**).

With q= ℘[0...n] ·p, we obtain by (*) and (**):

ensSs,s 6 ensTs,s+q · (e− ensTt,α,s)

eapSs,s > eapTs,s+q · (e− eapTt,α,s)

and therefore:

LPS
M(aUb) >

eapTs,s + q · (e− eapTt,α,s)

ensTs,s + q · (e− ensTt,α,s)
(‡)

We now use (†) and (‡) to show that LPS
M(aUb) >

LPT
M(aUb).

Obviously, the expected number of steps is an upper
bound for the expected accumulated probability for
aUb. In particular:

eapTt,α,s 6 ensTt,α,s

Hence, if e= ensTt,α,s then e− eapTt,α,s > 0 and there-
fore:

LPS
M(aUb) >

eapTs,s

ensTs,s
= LPT

M(aUb)

Suppose now that e 6= ensTs,α,s.

If e > ensTs,α,s then

e− eapTs,α,s

e− ensTs,α,s
>
e− ensTs,α,s

e− ensTs,α,s
= 1 >

eapTs,s

ensTs,s

We now use the fact that if x,y,z,w are non-negative
real numbers with w,y > 0 then:

x+z
y+w >

x
y iff z

w >
x
y

This yields:

LPS
M(aUb) >

eapTs,s

ensTs,s
= LPT

M(aUb)

It remains to consider the case e < ensTs,α,s. Here, we
use the fact for that all non-negative rational numbers
x,y,z,w with y >w> 0 then:

x−z
y−w >

x
y iff z

w 6
x
y

In particular, if x 6 y and 0 < z < y then
(x−z)/(y−z)6 x/y. Hence:

eapTs,α,s−e

ensTs,α,s−e
6

eapTs,s

ensTs,s

which again yields:

LPS
M(aUb) >

eapTs,s − q · (eapTt,α,s−e)

ensTs,s − q · (ensTt,α,s−e)

>
eapTs,s
ensTs,s

= LPT
M(aUb)

For the general case where Πs is a (countable and
prefix-free) set of paths $, for which T schedules
several actions not in Actmax, the argument is fairly
the same. The essential difference is that we have to
consider all state-action pairs (t,α) in BT such that
state t = (t,y) is reachable from s via a path in Πs and
α ∈ Act(t)\Actmax(t) such that T schedules action α
for t with positive probability. So, the lower bound for
LPS

M,s(aUb) in (‡) then has the form:

LPS
M(aUb) >

eapTs,s +
∑
t,α
qt,α · (e− eapTt,α,s)

ensTs,s +
∑
t,α
qt,α · (e− ensTt,α,s)

where qt,α is the product of the probability in BT of
reaching t from s along a path in Πs and the probability
for taking action α in state t of BT.
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Max-lrp via max-MP

We now turn to the soundness of the constructed MDP
K that encodes a counter for the number of consecutive
A-states that have been visited in a suffix of the current
path.

Let us observe that K might be not strongly connected,
even if M is strongly connected. The reason is that not
all states in K might be reachable from the states sK.
If, however, M is strongly connected and we restrict K
to the states reachable from some states sK then K is
strongly connected. This justifies to drop the starting
state when talking maximal long-run probabilities or
the maximal expected mean payoff in K.

We start with the observation that the switch from M

to K preserves the maximal long-run probabilities for
aUb.

Lemma A.14. LPmax
M (aUb) = LPmax

K (aUb)

Proof. obvious from Lemma IV.7.

The remaining task is to show that LPmax
K (aUb) is

the maximal expected mean payoff in K. For this, we
switch from K to the following MDP N which uses
with state- rather than transition-based weights. The
definition of the weighted MDP N is as follows. The
state space of N is:

SN = C× {0} ∪ (A∪B)× {1, . . . ,K,>}

The new MDP N has the same action set as M and
the following transition probabilities:

• If s ∈ C then PN((s,0),α,(s ′,k)) = P(s,α,s ′) if
either s ′ ∈ C∧k= 0 or s ′ ∈A∪B∧k= 1.

• If (s, i) ∈A× {1, . . . ,K−1} then:
PN((s, i),α,(s ′,0)) = P(s,α,s ′) if s ′ ∈ C
PN((s, i),α,(s ′, i+1)) = P(s,α,s ′) if s ′ ∈A∪B

• If s ∈A, k ∈ {K,>} and α ∈ Actmax(s) then:
PN((s,k),α,(s ′,0)) = P(s,α,s ′) if s ′ ∈ C
PN((s,k),α,(s ′,>)) = P(s,α,s ′) if s ′ ∈A∪B

• If s ∈ B and k ∈ {1, . . . ,K,>} then:
PN((s,k),α,(s ′,0)) = P(s,α,s ′) if s ′ ∈ C
PN((s,k),α,(s ′,1)) = P(s,α,s ′) if s ′ ∈A∪B

And PN(·) = 0 in all remaining cases. The weight
function of N assigns rational values to states:

• wgtN(s,k) = k if s ∈ B and k ∈ {1, . . . ,K}
• wgtN(s,K) = pmax

s ·K if s ∈A
• wgtN(s,>) = pmax

s if s ∈A∪B

Note that for s ∈ B we have wgtN(s,>) = 1.

If s is a state of M then sN denotes the corresponding
state in N, namely sN = (s,0) for s∈C and sN = (s,1)
if s ∈A∪B.

As for K, with the above definition N might be not
strongly connected. If, however, we restrict N to the
fragment that is reachable from the state sN then N is
strongly connected.

Lemma A.15. LPmax
K (aUb) = LPmax

N (aUb) and
Emax
K (MP) = Emax

N (MP)

Proof. obvious as N can be viewed as a variant of K
with state-based (rather than transition-based) weights.

Hence, the remaining is to prove that LPmax
N (aUb)

coincides with Emax
N (MP).

Lemma A.16. For each FM-scheduler S for N:

ES
N,sN(MP) > LPS

N,sN(aUb)

Furthermore, if S leaves A× {>} with probability 1
whenever it reaches this set of states, i.e., if the Markov
chain induced by S has no BSCC consisting of states
in A× {>}, then equality holds.

Proof. Let S be an FM-scheduler for N and let C=CS

be the induced finite Markov chain with SC = SN×X
where X denotes the set of modes of S. Thus, the states
of C are triples (s,k,x) with s ∈ S, k ∈ {0,1, . . . ,K,>}
and x ∈ X where k= 0 if s ∈C and k ∈ {1, . . . ,K,>} if
s ∈A∪B.

It suffices to prove that the expected mean payoff of
each BSCC B of C is greater or equal than the long-
run probability for aUb in B. In what follows, we fix
a BSCC B of C and use the following notations.

• Symbol s is used to denote states in B.
• θs denotes the long-run frequency (steady-state

probability) of state s in B.
• ps denotes the probability for aUb in C (resp.

B) from state s.
• ws denotes the weight of state s in C, i.e., if s =

(s,k,x) then ws = wgtN(s,k).

For sets of A- and B-states inside the given BSCC B

we shall use the following notations:

A = B ∩ (A× {1, . . . ,K}×X)
B = B ∩ (B× {1, . . . ,K}×X)

We write A> for A extended by the set of states
(s,>,x)∈B with s∈A. Similarly, B> is B extended
by the states (s,>,x) ∈B with s ∈ B.

Treating θ = (θs)s∈SC as a row vector and p =
(ps)s∈SC and w= (ws)s∈SC as column vectors:

ES
N,sN(MP) − LPS

N,sN(aUb) = 〈θ,w−p〉

where 〈·, ·〉 denotes the Euclidean inner product. Using
the fact that ws = ps = 1 for each state s = (s,k,x) in
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C with s ∈ B and k = > and ws = ps = 0 for each
state s = (s,1,x) in C with s ∈ C we obtain:

〈θ,w−p〉 =
∑

s∈SC
θs · (ws−ps)

=
∑

s∈A>∪B>
θs · (ws−ps)

>
∑

s∈A∪B
θs · (ws−ps)

If S leaves A× {>} with probability 1 after entering,
then equality holds, as then ws = ps = p

max
s for each

state s = (s,k,x) in B with s ∈A and k=>.

We define the matrix

P ∈ [0,1]A∪B

as the transition probability matrix of C restricted to
the states in A∪B and with all outgoing transitions
from states in B and A× {K} removed, i.e., the rows
with index (s,k,x) where s ∈ B or k= K are set to 0.
Let θ ′, p ′ and w ′ be the vectors θ, p and w projected
to A∪B.

Furthermore, let θ ′[i] be the vector obtained from θ ′

by setting all entries not indexed by (s, i,x), s ∈ S,
x ∈ X, to 0 and define p ′[i] analogously. Let now i, j
be integers with K> j> i> 1. Then:

θ ′[j] = θ ′[i] ·Pj−i and θ ′ =

K−1∑
i=0

θ ′[1] ·Pi.

Intuitively, the left equation states that we can compute
the steady state probabilities for states with index i
using only the steady state probabilities for states with
index j and the j− i steps transition probability matrix
Pj−i. This follows from the fact that states indexed
by j can only be reached from states indexed by i in
j−i steps.

We now regard the vector d ∈ [0,1]A∪B with
d(s,k,x) = 1 if s∈ B, d(s,K,x) = p

max
s , and d(s,k,x) = 0

in all other cases. Then:

p ′[i] 6
K−i∑
j=0

Pj ·d

where the inequality is understood componentwise.
Again, equality holds if S always leaves A× {>}
almost surely.

So, we get:∑
s∈A∪B

θs ·ps

=

K∑
k=1

〈θ ′[k],p ′[k]〉 6
K∑
k=1

〈
θ ′[k],

K−k∑
j=0

Pj ·d
〉

=

K∑
k=1

K−k∑
j=0

θ ′[k] ·Pj ·d

=

K∑
k=1

K−k∑
j=0

θ ′[1] ·Pj+k−1 ·d

=

K∑
k=1

K∑
i=K−k

θ ′[i] ·d =

K∑
k=1

k ·q ′[k] ·d

But now, we see that the weight structure in N was
just defined such that the last line sums up to 〈θ ′,w ′〉.
Thus: ∑

s∈A∪B
θs ·ps =

∑
s∈A∪B

θs ·ws

We conclude that 〈θ,w−p〉 > 0 and 〈θ,w−p〉 = 0 if
S leaves A× {>} almost surely.

This yields ES
B(MP) > LPS

B(aUb) in the general
case and ES

B(MP) = LPS
B(aUb) if S leaves A× {>}

almost surely.

Lemma A.17. Emax
N (MP) = LPmax

N (aUb)

Proof. Thanks to Lemma A.16, it suffices to con-
struct a scheduler T for N such that LPT

N,sN(aUb) =
Emax
N (MP) for all states sN.

Let S be an MD-scheduler for N that maximizes
the expected mean payoff from every state in N. We
may assume w.l.o.g. that the induced Markov chain
(restricted to the states that are reachable from the
states sN) has a single BSCC, say B.

Case 1: B is not contained in A× {>}. Then S always
leaves A× {>} with probability 1. The second part of
Lemma A.16 yields:

Emax
N (MP) = ES

N,sN(MP) = LPS
M,sN(aUb)

Hence, we can deal with S= T.

Case 2: B is contained in A× {>}. In this case, we
can construct an infinite-memory scheduler T with
LPT

N,sN(aUb) = ES
N,sN

(MP). The idea is that sched-
uler T stays inside B for larger and larger number
of steps and in between it leaves B to maximize the
probability for aUb. In this way, the weight of states
in B is equal to the probability of aUb under T and the
long-run probability then equals this probability.

Corollary A.18 (See Lemma IV.8). LPmax
M (aUb) =

Emax
K (MP).
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Proof. The claim follows by combining the results that
have been established so far:

LPmax
M (aUb) = LPmax

K (aUb) (Lemma A.14)
= LPmax

N (aUb) (Lemma A.15)
= Emax

N (MP) (Lemma A.17)
= Emax

K (MP) (Lemma A.15)

NP-hardness

We now turn to the threshold problem for long-run
probabilities and until-properties that takes as input a
strongly connected M, atomic propositions a, b and a
rational value ϑ and asks whether LPmax

M (aUb) > ϑ.
By the results that have been establishes so far, this
problem belongs to EXPTIME. We now provide an
NP lower bound.

Theorem A.19. The threshold problem “is
LPmax

M (aUb)> ϑ?” is NP-hard.

Proof. We prove the statement by a polynomial reduc-
tion from the intersection problem for unary DFA, i.e.,
DFA over a one-letter alphabet. This problem is known
to be NP-complete [5].

So, we are given a finite number of unary DFA, say
D1, . . . ,Dk over the alphabet Σ = {0}. where Di =
(Qi,Σ,δi,q0.i,Fi). We simply write δi(q) rather than
δi(q,0). We may suppose the transition functions δi
are total and that Qi ∩Qj = ∅ if i 6= j. W.l.o.g. we
further assume that |Qi|> 2 for all i6 k.

We are going to construct an MDP M over AP = {a,b}
and a rational value ϑ such that LPmax

M (aUb) > ϑ
if and only if L(D1) ∩ . . . ∩ L(Dk) is nonempty.
Obviously, the latter is equivalent to the statement
that there exists some n ∈ N with n < ` and 0n ∈
L(D1)∩ . . .∩L(Dk) where `= |Q1| · . . . · |Qk|.
Let A= (Q,Σ,δ,Q0,F) denote the NFA resulting from
the union of D1, . . . ,Dk. That is, Q = Q1 ∪ . . .∪Qk,
Q0 = {q0,1, . . . ,q0,k}, F= F1∪ . . .∪Fk and δ(q) = δi(q)
if q ∈Qi. That is, besides the nondeterministic choice
of the initial state, A behaves deterministically. The
idea is now to treat A as a substructure of an MDP
M where all states of M are labeled by a. The
substructure A can be entered in M via an action
that assigns probabilities 1/k to each of the k initial
states, possibly using a “pumping option” to increase
the number of a-states before simulating M. In each
state q ∈ Q an action α is enabled that mimics A’s
transition from q with probability (r−1)/r and moves
back to the state where A can be entered (in which
neither a nor b holds) with probability 1/r. For the
final states q ∈ F there is also an β that leads with

probability 1 to a b-state form which M can return
to the state where M can be entered. Other states and
transitions of M are needed for technical purposes.

The idea of this construction is as follows. To maxi-
mize the long-run probability for aUb in M, a sched-
uler guesses a natural number n with with n6 ` and
0n ∈ L(D1)∩ . . .∩L(Dk). It then uses the pumping
option to enter M after having generated a sequence
of `−n a-states. It then attempts to make n steps inside
A using action α and leaves A using the β transition.

Formally, the state space of M is

S = Q∪ {a,b,c, init}

where the states in Q ∪ {a} are labeled by a
and b is labeled by b. The action set is Act =
{α,β,enter,pump,τ}. The transition probabilities are
as follows (where r and r′ are rational numbers > 1
defined later):

• In s∈ {init,a}, actions enter and pump are enabled
with the transition probabilities:

P(s,enter,q0,i) =
r−1
k·r , i= 1, . . . ,k,

P(s,enter, init) = 1
r ,

P(s,pump,a) = r−1
r , P(s,pump, init) = 1

r .

• In each state q ∈Q, action α is enabled with:

P(q,α,δ(q)) = r−1
r , P(q,α, init) = 1

r

For the final states q ∈ F, additionally action β is
enabled with P(q,β,b) = 1.

• In s′ ∈ {b,c}, action τ is enabled with:

P(s′,τ,c) = r′−1
r′ , P(s′,τ, init) = 1

r′

Scheduler Sn and its long-run probability.: Before
defining the values r and r′, let us suppose n is an
integer with n < ` and 0n ∈ L(D1) ∩ . . . ∩L(Dk).
Regard the FMD-scheduler Sn which behaves as
follows. Let m= `−n−1. From state init, Sn attempts
to reach a and stay there via the pumping option pump
until the generated path ends in m consecutive visits
to a. Afterwards the scheduler Sn enters A via enter.
Let q0,i be the state reached after that sequence. Sn
then attempts to follow the unique accepting run for
0n in Di (via action α). If successful it reaches a final
state q ∈ Fi. It then takes action β and returns to init
via the τ-transitions in states b and c. Of course, each
of the attempts might fail, in which case Sn returns
to init and behaves in the same way.

The long-run probability LPSn
M (aUb) under Sn can

be computed as the quotient of expected accumulated
probability and expected number of steps between two
visits to init: Let ρ= r−1

r . For 16 k6 `, the scheduler
succeeds in generating a path starting with k con-
secutive a-states with probability ρk. The probability
to satisfy aUb afterwards is ρ`−k. In addition b is
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reached with probability ρ` and here the probability of
aUb is 1. So, the expected accumulated probability is(∑̀

k=1

ρk ·ρ`−k
)
+ρ` = ρ`(`+1).

For the expected number of steps, we get the following:
The probability to return to init in exactly 1 6 k 6 `
steps is given by (1−ρ)ρk−1. With probability ρ`, the
state b is reached in which case the expected return
time is `+ 1+ r′. All in all, the expected number of
steps is ∑̀

k=1

k(1−ρ)ρk−1+(`+ r′+1)ρ`

=
1−ρ`

1−ρ
− ` ·ρ`+(`+ r′+1)ρ`

= r+(r′+1− r)ρ`

as 1
1−ρ = r. We let r′ := r−1 and obtain

LPSn
M (aUb) =

ρ`(`+1)
r

= (1−ρ)ρ`(`+1).

Definition of r (and ρ = (r−1)/r): For j ∈ N, define
℘j := (1−ρ)ρj(j+1). The goal is to choose r in such
a way that ℘` > ℘j for all j ∈ N \ {`}. In particular,
this means that we have to choose r such that ρj(j+
1) reaches it maximum for j = `. This is achieved by
r = `+ 1.5 as can be seen as follows. Let j ∈ N and
./∈ {<,=,>}. Then:

ρj(j+1) ./ ρj+1(j+2) iff j+1 ./ r−1
r (j+2)

iff j+1
j+2 ./ r−1

r

iff j+2 ./ r

In particular, if r= `+1.5 then `+2> r and therefore:

℘` > ℘`+1 > ℘`+2 > . . .

On the other hand, (`−1)+2 = `+1< r and therefore:

℘` > ℘`−1 > ℘`−2 > . . .

Definition of the threshold value ϑ: The idea is to use
the observation that the maximal long-run probability
that can be achieved when the intersection language is
empty is bounded by (maybe, needs to be checked):

ϑ`
def
= ℘`−

µ

k

where µ is the minimal difference between the value
℘` and one the values ℘j for j 6= `.
Note that when entering A after having visited state a
m-times, then at least one of the DFA D1, . . . ,Dk does
not accept the word 0`−m. And taking α resp. pump
fewer or more times than ` (which means firing the β-
transition to state b after having visited j a-states for
some j different from `) yields a value ℘j < ℘`. Same

for combinations of such options depending on which
of the states q0,i is entered.

As the values ℘j are strictly increasing for j < ` and
strictly decreasing for j > ` we have:

µ = min
{
℘`−℘`−1, ℘`−℘`+1

}
Using the fact that

ρ` =
(
1− 1

r

)`
> 1− `

r

and using r= `+1.5 and (1−ρ) = 1/r we obtain:

℘`−℘`−1 = (1−ρ)(ρ`(`+1)−ρ`−1`)

> 1
r

(
1− `

r

)(
1+ `− `/ρ)

= 3
2r2 · (1− `

r−1 ) = 3
4r2(r−1) >

3
4r3 .

and
℘`−℘`+1 = (1−ρ)(ρ`(`+1)−ρ`+1(`+2))

> 1
r

(
1− `

r

)(
1+ `(1−ρ)−2ρ

)
= 3

2r2 · 1
2r =

3
4r3 .

This yields µ > 3
4r3 . In addition, k 6 log(`) as we

assume that all Di have at least two states. To get
a safe approximation, we observe that for ` > 1000,
we have 100

`4 <
µ
k .

The crux is now to find a rational threshold ϑ with
ϑ` <ϑ6 ℘` that is computable in polynomial time. We
cannot use ℘` as its logarithmic length is exponential
in the input size (the sum of the sizes of D1, . . . ,Dk).
Instead, we will compute an approximation ℘′ of ℘` ·`4
up to an absolute error < 50 in polynomial time. Then
for ` > 1000, we can choose the threshold ϑ to be
℘′−50
`4 as

℘` >
℘′−50
`4

> ℘`−
100
`4
> ℘`−µ/k= ϑ`.

Approximation of ℘` · `4: We define the real function

f(z) :=
(1/z+1/2)1/z

(1/z+3/2)1/z+1 (1/z+1)

for z ∈ [−1/2,1/2] \ {0} and f(0) := 1
e where e is

Euler’s number. The idea is that f(1/`) = ℘` and that
we can provide good approximations of f(z) for z
close to 0 using Taylor’s theorem: By standard methods
from calculus, we see that the function f is 5 times
continuously differentiable on [−1/2,1/2]. Calculating
the derivatives, we obtain the following approximation:

f(z) =
1
e
+
z

2e
−
z2

3e
+
z3

4e
−

313z4

1440e
+O(z5)

for z→ 0. So there are reals c0, z0 > 0 such that∣∣∣∣f(z)−(1
e
+
z

2e
−
z2

3e
+
z3

4e
−

313z4

1440e

)∣∣∣∣6 c0z
5

for |z|< z0. Using ℘` = f(1/`) we obtain∣∣∣∣℘``4 − 1
e

(
`4 +

1
2
`3 −

1
3
`2 +

1
4
`−

313
1440

)∣∣∣∣6 c0`
−1
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for ` > 1/z0.

Let L = max{1/z0,c0,1000}. To obtain the desired
approximation of ℘``4 for ` > L, it is enough to
approximate

1
e

(
`4 +

1
2
`3 −

1
3
`2 +

1
4
`−

313
1440

)
up to an absolute error of 49. Hence, approximating 1

e

up to an absolute error of 1
`4 is sufficient. This can be

done in polynomial time.

So, we can compute a threshold value for ` > L which
completes the reduction of the intersection problem for
unary DFA to the threshold problem for maximal long-
run probabilities in MDPs. As L is defined in terms of
the function f, i.e. independent of all variables, and as
there are only finitely many instances with `6 L, this
finishes the proof.
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