NetKet: A machine learning toolkit for many-body quantum systems - Archive ouverte HAL
Article Dans Une Revue SoftwareX Année : 2019

NetKet: A machine learning toolkit for many-body quantum systems

Giuseppe Carleo
  • Fonction : Auteur
  • PersonId : 941229
Emily Davis
  • Fonction : Auteur
Guglielmo Mazzola
  • Fonction : Auteur
Alexander Wietek

Résumé

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics.
Fichier principal
Vignette du fichier
1-s2.0-S2352711019300974-main.pdf (537.94 Ko) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-02346742 , version 1 (09-02-2024)

Licence

Identifiants

Citer

Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom Westerhout, et al.. NetKet: A machine learning toolkit for many-body quantum systems. SoftwareX, 2019, 10, pp.100311. ⟨10.1016/j.softx.2019.100311⟩. ⟨hal-02346742⟩
159 Consultations
48 Téléchargements

Altmetric

Partager

More