
HAL Id: hal-02346742
https://hal.science/hal-02346742v1

Submitted on 9 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

NetKet: A machine learning toolkit for many-body
quantum systems

Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom
Westerhout, Fabien Alet, Emily Davis, Stavros Efthymiou, Ivan Glasser,

Sheng-Hsuan Lin, et al.

To cite this version:
Giuseppe Carleo, Kenny Choo, Damian Hofmann, James E.T. Smith, Tom Westerhout, et al.. NetKet:
A machine learning toolkit for many-body quantum systems. SoftwareX, 2019, 10, pp.100311.
�10.1016/j.softx.2019.100311�. �hal-02346742�

https://hal.science/hal-02346742v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SoftwareX 10 (2019) 100311

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

NetKet: Amachine learning toolkit formany-body quantum systems
Giuseppe Carleo a,∗, Kenny Choo b, Damian Hofmann c, James E.T. Smith d,
Tom Westerhout e, Fabien Alet f, Emily J. Davis g, Stavros Efthymiou h, Ivan Glasser h,
Sheng-Hsuan Lin i, Marta Mauri a,j, Guglielmo Mazzola k, Christian B. Mendl l,
Evert van Nieuwenburgm, Ossian O’Reilly n, Hugo Théveniaut f, Giacomo Torlai a,
Filippo Vicentini o, Alexander Wietek a

a Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, NY 10010, New York, USA
b Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
c Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
d Department of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USA
e Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands
f Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
g Department of Physics, Stanford University, Stanford, CA 94305, USA
h Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching bei München, Germany
i Department of Physics, T42, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
j Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
k Theoretische Physik, ETH Zürich, 8093 Zürich, Switzerland
l Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany
m Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA
n Southern California Earthquake Center, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USA
o Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France

a r t i c l e i n f o

Article history:
Received 28 March 2019
Received in revised form 9 August 2019
Accepted 12 August 2019

Keywords:
Neural-network quantum states
Variational Monte Carlo
Quantum state tomography
Machine learning
Supervised learning

a b s t r a c t

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum
systems using machine learning techniques. The framework is built around a general and flexible
implementation of neural-network quantum states, which are used as a variational ansatz for quantum
wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and
quantum technology, namely quantum state tomography, supervised learning from wavefunction data,
and ground state searches for a wide range of customizable lattice models. Our aim is to provide a
common platform for open research and to stimulate the collaborative development of computational
methods at the interface of machine learning and many-body physics.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 2.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_95
Code Ocean compute capsule n/a
Legal Code License Apache 2.0
Code versioning system used git
Software code languages, tools, and services used C++, Python, MPI
Compilation requirements, operating environments & dependencies C++ compiler supporting C++11 (tested with GCC ≥ 5, Clang ≥ 4, and Xcode

≥ 9), MPI, Python 2.7 or 3.6
Developer documentation/manual https://netket.org/docs
Support email for questions netket@netket.org

∗ Corresponding author.
E-mail address: gcarleo@flatironinstitute.org (G. Carleo).

https://doi.org/10.1016/j.softx.2019.100311
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.100311
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100311&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_95
https://netket.org/docs
mailto:netket@netket.org
mailto:gcarleo@flatironinstitute.org
https://doi.org/10.1016/j.softx.2019.100311
http://creativecommons.org/licenses/by/4.0/

2 G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311

1. Motivation and significance

Recent years have seen a tremendous activity around the
development of physics-oriented numerical techniques based on
machine learning (ML) tools [1]. In the context of many-body
quantum physics, one of the main goals of these approaches is
to tackle complex quantum problems using compact represen-
tations of many-body states based on artificial neural networks.
These representations, dubbed neural-network quantum states
(NQS) [2], can be used for several applications. In the supervised
learning setting, they can be used, e.g., to learn existing quantum
states for which a non-NQS representation is available [3]. In
the unsupervised setting, they can be used to reconstruct com-
plex quantum states from experimental measurements, a task
known as quantum state tomography [4]. Finally, in the context
of purely variational applications, NQS can be used to find ap-
proximate ground- and excited-state solutions of the Schrödinger
equation [2,5–9], as well as to describe unitary [2,10,11] and
dissipative [12–15] many-body dynamics. Despite the increas-
ing methodological and theoretical interest in NQS and their
applications, a set of comprehensive, easy-to-use tools for re-
search applications is still lacking. This is particularly pressing
as the complexity of NQS-related approaches and algorithms is
expected to grow rapidly given these first successes, steepening
the learning curve.

The goal of NetKet is to provide a set of primitives and flexible
tools to ease the development of cutting-edge ML applications for
quantum many-body physics. NetKet also wants to help bridge
the gap between the latest and technically demanding develop-
ments in the field and those scholars and students who approach
the subject for the first time. Pedagogical tutorials are provided to
this aim. Serving as a common platform for future research, the
NetKet project is meant to stimulate the open and easy-to-certify
development of new methods and to provide a common set of
tools to reproduce published results.

A central philosophy of the NetKet framework is to provide
tools that are as simple as possible to use for the end user. Given
the huge popularity of the Python programming language and
of the many accompanying tools gravitating around the Python
ecosystem, we have built NetKet as a full-fledged Python library.
This simplicity of use however does not come at the expense of
performance. With this efficiency requirement in mind, all critical
routines and components of NetKet have been written in C++11.

2. Software description

We will first give a general overview of the structure of the
code in Section 2.1 and then provide additional details on the
functionality of NetKet in Section 2.2.

2.1. Software architecture

The core of NetKet is implemented in C++. For ease of use
and in order to facilitate the integration with other frameworks,
a Python interface is provided, which exposes all high-level func-
tionality from the C++ core via pybind11 [16] bindings. Use
of the Python interface is recommended for users building on
the library for research purposes, while the C++ code should be
modified for extending the NetKet library itself.

NetKet is divided into several submodules. The modules
graph, hilbert, and operator contain the classes necessary
for specifying the structure of the many-body Hilbert space, the
Hamiltonian, and other observables of a quantum system.

The core component of NetKet is the machine module, which
provides different variational representations of the quantum
wavefunction, particularly in the form of NQS. Encodings of mixed

states, needed to describe dissipative quantum system, are im-
plemented in the machine.densitymatrix submodule in the
form of Neural Density Operators (NDO) [17]. The variational,
supervised, and unsupervisedmodules contain driver classes
for energy optimization, supervised learning, and quantum state
tomography, respectively. These driver classes are supported by
the sampler and optimizer modules, which provide classes for
performing Variational Monte Carlo (VMC) sampling and opti-
mization steps.

The exact module provides functions for exact diagonaliza-
tion (ED) based on SciPy [18] and time propagation of the full
quantum state, in order to allow for easy benchmarking and
exploration of small systems within the NetKet framework. The
NetKet operator classes implement the SciPy linear-operator in-
terface and can also be converted to sparse and dense matrices,
providing interoperability with Python code. In particular, the
sparse and dense ED routines provided by the exact module
are implemented as thin wrappers around SciPy functionality.
The dynamics module provides basic ODE solvers for exact time
propagation.

The utility modules output, stats, and util contain some
additional functionality for output and statistics that is used
internally in other parts of NetKet.

An overview of the most important modules and their de-
pendencies is given in Fig. 1. A more detailed description of the
module contents will be given in the next section.

NetKet uses the Eigen 3 library [19] for linear algebra routines.
In the Python interface, Eigen datatypes are transparently con-
verted to and from NumPy [20] arrays by pybind11. The NetKet
driver classes provide methods to directly write the simulation
output to JSON files, which is done with the help of the nlohman-
n/json library for C++ [21]. Parallelization is implemented based
on the Message Passing Interface (MPI), allowing to substantially
decrease running time. Specifically, the Monte Carlo sampling of
expectation values implemented in the variational.Vmc class
is parallelized, with each node drawing independent samples
from the probability distribution which are averaged over all
nodes.

2.2. Software functionalities

The core feature of NetKet is the variational representation of
quantum states by artificial neural networks. Given a variational
state, the task is to optimize its parameters with regard to a
specified loss function, such as the total energy for ground state
searches or the (negative) overlap with a given target state. In
this section, we will discuss the models, types of variational
wavefunctions, and learning schemes that are available in NetKet.

2.2.1. Model specification
NetKet currently supports lattice models with a finite Hilbert

space of the form H = H⊗N
local where N denotes the number of

lattice sites and Hlocal denotes the local Hilbert space of each
site. The system is defined on a graph with a set of N sites and
a set of edges (also called bonds) between pairs of sites. This
graph structure is used to help with the definition of operators
on the lattice and to encode the spatial structure of the model,
which is necessary, e.g., to work with convolutional neural net-
works (CNNs). NetKet provides the predefined Hypercube and
Lattice graphs. Furthermore, CustomGraph supports arbitrary
edge-colored graphs, where each edge is associated with an in-
teger label called its color. This color can be used to describe
different types of bonds.

General lattice spin models can be described straightforwardly
in this manner. Bosonic lattice models can also be easily rep-
resented by truncating the local Hilbert space to only allow for

G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311 3

Fig. 1. The main submodules of the netket Python module and their dependencies from a user perspective (i.e., only dependencies in the public interface are
shown). Below each submodule, examples of contained classes and functions are displayed. In a typical workflow, users will first define a quantum model, specify a
variational representation of the wavefunction as well as the Monte Carlo sampling and optimization methods, and then run the simulation using one of the driver
classes. A more detailed description of the software architecture and features is given in the main text.

occupations of up to Nlocal bosons per site [22]. NetKet currently
provides pre-defined Hamiltonians for the transverse-field Ising,
Heisenberg, and Bose–Hubbard models. Other observables and
custom Hamiltonians can also be specified: a convenient option
for common lattice models is to use the GraphOperator class,
which allows to construct a Hamiltonian from a family of 2-local
operators acting on each bond of a selected color and a family of
1-local operators acting on each site. It is also possible to specify
general k-local operators (as well as their products and sums)
using the LocalOperator class.

While fermionic Hamiltonians are not fully supported in the
present version, they can be implemented using a custom Jordan–
Wigner mapping and the LocalOperator class [23].

2.2.2. Variational quantum states
The purpose of variational states is to provide a compact and

computationally efficient representation of quantum states. Since
generally only a subset of the full many-body Hilbert space will
be covered by a given variational ansatz, the aim is to use a
parametrization that captures the relevant physical states for a
given problem.

The variational wavefunctions supported by NetKet are pro-
vided as part of the machine module, which currently includes
NQS but also Jastrow wavefunctions [24,25] and matrix-product
states (MPS) [26–28].

Broadly, there are two main types of NQS available in NetKet:
restricted Boltzmann machines (RBM) [29] and feed-forward neu-
ral networks (FFNN) [8,9,30,31]. Both types of networks are fully
complex, i.e., with both complex-valued parameters and output.

The machine module contains the RbmSpin class for spin-
1
2 systems as well as two other variants: the symmetric RBM
(RbmSpinSymm) to capture lattice symmetries such as translation
and inversion symmetries and the multi-valued RBM

(RbmMultiVal) for systems with larger local Hilbert spaces (such
as higher spins or bosonic systems).

FFNNs represent a broad and flexible class of networks and are
implemented by the FFNN class. They consist of a sequence of lay-
ers available from the layer submodule, each layer performing
either an affine transformation to the input vector or applying a
non-linear activation function. There are currently two types of
affine maps available:

• Dense fully-connected layers, which for an input x ∈ Cn and
output y ∈ Cm have the form y = Wx+ b where W ∈ Cm×n

and b ∈ Cm are called the weight matrix and bias vector,
respectively.

• Convolutional layers [30,32] for hypercubic lattices.

As activation functions, rectified linear units (Relu) [33], hy-
perbolic tangent (Tanh) [34], and the logarithm of the hyper-
bolic cosine (Lncosh) are provided. RBMs without visible bias
can be represented as single-layer FFNNs with ln cosh activa-
tion, allowing for a generalization of these machines to multiple
layers [5].

The machine module also provides more traditional varia-
tional wavefunctions, namely MPS with periodic boundary con-
ditions (MPSPeriodic) and long-range Jastrow (Jastrow) wave-
functions, which allows for comparison of NQS with results ob-
tained using these approaches.

Finally, NetKet also includes representations of mixed states
in the machine.densitymatrix submodule, which most no-
tably includes the real-valued NDO ansatz (NdmSpinPhase). For
compatibility with the rest of the package, the vectorized repre-
sentation of density matrices can be accessed through the same
interface as NQS.

Customwavefunctions may be provided by implementing sub-
classes of the AbstractMachine class in C++ or in Python by
deriving netket.machine.CxxMachine.

4 G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311

2.2.3. Supervised learning
In supervised learning, a target wavefunction is given and

the task is to optimize a chosen ansatz to represent it. This
functionality is contained within the supervised module. Given
a variational state |ΨNN(α)⟩ depending on the parameters α ∈ Cm

and a target state |Ψtar⟩, the negative log overlap

L(α) = − log
⟨Ψtar|ΨNN(α)⟩

⟨Ψtar|Ψtar⟩

⟨ΨNN(α)|Ψtar⟩

⟨ΨNN(α)|ΨNN(α)⟩
(1)

is taken as the loss function to be minimized. The loss is com-
puted in a Monte Carlo fashion by direct sampling of the target
wavefunction. To minimize the loss, the gradient ∇α L of the
loss function with respect to the parameters is calculated. This
gradient is then used to update the parameters according to a
specified gradient-based optimization scheme. For example, in
stochastic gradient descent (SGD) the parameters are updated as

α → α − λ∇αL (2)

where λ is the learning rate. The different update rules supported
by NetKet are contained in the optimizermodule. Various types
of optimizers are available, including SGD, AdaGrad [35], AdaMax
and AdaDelta [36], AMSGrad [37], and RMSProp.

2.2.4. Unsupervised learning
NetKet also allows to carry out unsupervised learning of un-

known probability distributions, which in this context corre-
sponds to quantum state tomography [38]. Given an unknown
quantum state, a neural network can be trained on projective
measurement data to discover an approximate reconstruction of
the state [4]. In NetKet, this functionality is contained within the
unsupervised.Qsr class.

For some given target quantum state |Ψtar⟩, the training
dataset D consists of a sequence of projective measurements
σb in different bases b, with underlying probability distribution
P(σb) = |Ψtar(σb)|2. The quantum reconstruction of the target
state translates into minimizing the statistical divergence be-
tween the distribution of the measurement outcomes and the
distribution generated by the NQS. This corresponds, up to a
constant dataset entropy contribution, to maximizing the log-
likelihood of the network distribution over the measurement data

L =

∑
σb∈D

logπ (σb) , (3)

where π denotes the probability distribution

π (σ) =
|ΨNN(σ)|2∑
σ′ |ΨNN(σ ′)|2

. (4)

generated by the NQS wavefunction.
Note that, for every training sample where the measurement

basis differs from the reference basis |σ⟩ of the NQS, a unitary
transformation Û should be applied to appropriately change the
basis, ΨNN(σb) = ÛbΨNN(σ).

The network parameters are updated according to the gradient
of the log-likelihood L. This can be computed analytically, and
it requires expectation values over both the training data points
and the network distribution π (σ). While the first is trivial to
compute, the latter should be approximated by a Monte Carlo
average over configurations sampled from a Markov chain.

2.2.5. Variational Monte Carlo
Finally, NetKet supports ground state searches for a given

many-body quantum Hamiltonian Ĥ . In this context, the task is to
optimize the parameters of a variational wavefunction Ψ in order

Fig. 2. Variational optimization of the restricted Boltzmann machine for the
one-dimensional spin- 1

2 Heisenberg model. The main plot shows the Monte
Carlo energy estimate, which converges to the exact ground state energy up
to a relative error |(E − Eexact)/Eexact| of 4.16 × 10−5 within the 200 iteration
steps shown. The inset shows the Monte Carlo estimate of the energy variance,
which becomes zero in an exact eigenstate of the Hamiltonian.

to minimize the energy ⟨Ĥ⟩. The variational.Vmc driver class
contains the main logic to optimize a variational wavefunction
given a Hamiltonian, a sampler, and an optimizer.

The energy of a wavefunction Ψ (σ) = ⟨σ|Ψ ⟩ can be estimated
as

⟨Ĥ⟩ =

∑
σ,σ′ Ψ

∗(σ) ⟨σ| Ĥ |σ ′
⟩ Ψ (σ ′)∑

σ |Ψ (σ)|2

=

∑
σ

(∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

)
|Ψ (σ)|2∑
σ′ |Ψ (σ ′)|2

≈

⟨∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

⟩
σ

(5)

where in the last line ⟨ · ⟩σ denotes a stochastic expectation value
taken over a sample of configurations {σ} drawn from the proba-
bility distribution corresponding to the variational wavefunction
(4). This sampling is performed by classes from the sampler
module, which generate Markov chains of configurations using
the Metropolis algorithm [39] to ensure detailed balance. Parallel
tempering [40] options are also available to improve sampling
efficiency.

In order to optimize the parameters of a machine to minimize
the energy, a gradient-based optimization scheme can be applied
as discussed in the previous section. The energy gradient can be
estimated at the same time as ⟨Ĥ⟩ [2,25]. This requires computing
the partial derivatives of the wavefunction with respect to the
variational parameters, which can be obtained analytically for the
RBM [2] or via backpropagation [30,31,34] for multi-layer FFNNs.
In this case, the steepest descent update according to Eq. (2) is
also a form of SGD, because the energy is estimated using a sub-
set of the full data available from the variational wavefunction.
Alternatively, often more stable convergence can be achieved by
using the stochastic reconfiguration (SR) method [41,42], which
approximates the imaginary time evolution of the system on
the submanifold of variational states. The SR approach is closely
related to the natural gradient descent method used in machine
learning [43]. In the NetKet implementation, SR is performed
using either an exact or an iterative linear solver, the latter being
recommended when the number of variational parameters is
large.

Information on the optimization run (sampler acceptance
rates, energy, energy variance, expectation of additional observ-
ables, and the current variational parameters) for each iteration

G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311 5

1 import netket as nk
2
3 # Define the graph : a 1D chain of 20 s i t e s with periodic
4 # boundary conditions
5 g = nk . graph . Hypercube (length =20 , n_dim=1 , pbc=True)
6
7 # Define the Hi lbert Space : spin ha l f degree of freedom at each
8 # s i t e of the graph , r e s t r i c t ed to the zero magnetization sector
9 hi = nk . h i lbe r t . Spin (s =0 .5 , to ta l _ sz =0 .0 , graph=g)

10
11 # Define the Hamiltonian : spin ha l f Heisenberg model
12 ha = nk . operator . Heisenberg (h i lbe r t =hi)
13
14 # Define the ansatz : Restr ic ted Boltzmann machine
15 # with 20 hidden units
16 ma = nk . machine . RbmSpin(h i lbe r t =hi , n_hidden=20)
17
18 # I n i t i a l i s e with machine parameters
19 ma. init_random_parameters (seed=1234 , sigma=0.01)
20
21 # Define the Sampler : metropolis sampler with loca l
22 # exchange moves , i . e . nearest neighbour spin swaps
23 # which preserve the to t a l magnetization
24 sa = nk . sampler . MetropolisExchange (graph=g , machine=ma)
25
26 # Define the optimiser : Stochast ic gradient descent with
27 # learning rate 0 .01 .
28 opt = nk . optimizer . Sgd (learning_rate =0.01)
29
30 # Define the VMC object : Stochast ic Reconfiguration " Sr " i s used
31 gs = nk . va r i a t iona l .Vmc(hamiltonian=ha , sampler=sa ,
32 optimizer=opt , n_samples=1000 ,
33 use_ i te ra t ive =True , method= ’ Sr ’)
34
35 # Run the VMC simulation for 1000 i t e ra t i ons
36 # and save the output into f i l e s with pref ix " tes t "
37 # The machine parameters are stored in " tes t . wf"
38 # while the measurements are stored in " tes t . log "
39 gs . run (output_prefix= ’ t e s t ’ , n_ i ter =1000)

Listing 1: Example script for finding the ground state of the one-dimensional spin- 12 Heisenberg model using an RBM ansatz.

can be written to a log file in JSON format. Alternatively, they can
be accessed directly inside the simulation loop in Python to allow
for more flexible output.

3. Illustrative examples

NetKet is available as a Python package and can be obtained
from the Python package index (PyPI) [44]. Assuming a properly
configured Python environment, NetKet can be installed via the
shell command

pip install netket

which will download, compile, and install the package. A working
MPI environment is required to run NetKet. In case multiple MPI
installations are present on the system and in order to avoid po-
tential conflicts, we recommend to run the installation command
as

CC=mpicc CXX=mpicxx pip install netket

with the desired MPI environment loaded in order to perform the
build with the correct compiler. After a successful installation, the
NetKet module can be imported in Python scripts.

Alternatively to installing NetKet locally, NetKet also uses the
deployment of BinderHub from mybinder.org [45] to build and
deploy a stable version of the software, which can be found at
https://mybinder.org/v2/gh/netket/netket/v.2.0. This allows users
to run the tutorials or other small jobs without installing NetKet.

Fig. 3. Supervised learning of the ground state of the one-dimensional spin- 1
2

transverse field Ising model with 10 sites from ED data, using an RBM with 20
hidden units. The blue line shows the overlap between the RBM wavefunction
and the exact wavefunction for each iteration.

3.1. One-dimensional Heisenberg model

As a first example, we present a Python script for obtaining a
variational RBM representation of the ground state of the spin-
1
2 Heisenberg model on a one-dimensional chain with periodic
boundary conditions. The code for this example is shown in
Listing 1. Fig. 2 shows the evolution of the energy expectation
value over the course of the optimization run. We see that for
a small chain of 20 sites and an RBM with 20 hidden units, the

https://mybinder.org/v2/gh/netket/netket/v.2.0

6 G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311

1 import netket as nk
2 from numpy import log
3
4 # 1D La t t i ce
5 g = nk . graph . Hypercube (length =10 , n_dim=1 , pbc=True)
6
7 # Hilbert space of spins on the graph
8 hi = nk . h i lbe r t . Spin (s =0 .5 , graph=g)
9

10 # Is ing spin Hamiltonian
11 ha = nk . operator . I s ing (h=1.0 , h i lbe r t =hi)
12
13 # Perform Exact Diagonal izat ion to get lowest eigenvector
14 res = nk . exact . lanczos_ed (ha , f i r s t _n =1 , compute_eigenvectors=True)
15
16 # Store eigenvector as a l i s t of t ra in ing samples and targets
17 # The samples would be the Hi lbert space conf igurat ions and
18 # the targets should be wavefunction amplitudes .
19 hind = nk . h i lbe r t . HilbertIndex (hi)
20 h_size = hind . n_states
21 targets = [[log (res . eigenvectors [0] [i])] for i in range (h_size)]
22 samples = [hind . number_to_state (i) for i in range (h_size)]
23
24 # Machine : Restr ic ted Boltzmann machine
25 # with 20 hidden units
26 ma = nk . machine . RbmSpin(h i lbe r t =hi , n_hidden=20)
27 ma. init_random_parameters (seed=1234 , sigma=0.01)
28
29 # Optimizer
30 op = nk . optimizer . AdaMax()
31
32 # Supervised Learning module
33 spvsd = nk . supervised . Supervised (machine=ma,
34 optimizer=op ,
35 batch_size =400 ,
36 samples=samples ,
37 targets = targets)
38
39 # Run the optimization for 2000 i t e ra t i ons
40 spvsd . run (n_ i ter =2000 , output_prefix= ’ t e s t ’ ,
41 loss_funct ion="Overlap_phi ")

Listing 2: Example script for supervised learning. A RBM ansatz is optimized to represent the ground state of the one-dimensional
spin- 12 transverse field Ising model obtained by ED for this example.

energy converges to a relative error of the order 10−5 within
about 100 iteration steps.

3.2. Supervised learning

As a second example, we use the supervised learning module
in NetKet to optimize an RBM to represent the ground state of
the transverse field Ising model. The example script is shown in
Listing 2. The exact ground state wavefunction is first obtained by
exact diagonalization and then used for training the RBM state by
minimizing the overlap loss (1). Fig. 3 shows the evolution of the
overlap over the training iterations.

4. Impact

Given the flexibility of NetKet, we envision several poten-
tial applications of this library both in data-driven experimental
research and in more theoretical, problem-driven research on
interacting quantum many-body systems. For example, several
important theoretical and practical questions concerning the ex-
pressibility of NQS, the learnability of experimental quantum
states, and the efficiency at finding ground states of k-local Hamil-
tonians, can be directly addressed using the current functionality
of the software.

Moreover, having an easy-to-extend set of tools to work with
NQS-based applications can propel future research in the field,
without researchers having to pay a significant cost of entry in

terms of algorithm implementation and testing. Since its early
release in April 2017, NetKet has already been used for research
purposes by several groups worldwide [5,22,23,46–48]. We also
hope that, building upon a common set of tools, practices like
publishing accompanying codes to research papers, largely pop-
ular in the ML community, can become standard practice also for
ML applications in quantum physics.

Finally, for a fast-growing community like ML for quantum
science, it is also crucial to have pedagogical tools available that
can be conveniently used by new generations of students and
researchers. Benefiting from a growing set of tutorials and step-
by-step explanations, NetKet can be comfortably used in schools
and lectures.

5. Conclusions and future directions

We have introduced NetKet, a comprehensive open source
framework for the study of many-body quantum systems us-
ing machine learning techniques. Central to this framework are
variational parameterizations of many-body wavefunctions in the
form of artificial neural networks. NetKet is a Python framework
implemented in C++11, designed with efficiency as well as ease
of use in mind. Several examples, tutorials, and notebooks are
provided with our software in order to reduce the learning curve
for newcomers.

G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311 7

The NetKet project is meant to continuously evolve in fu-
ture releases, welcoming suggestions and contributions from its
users. For example, future versions may provide a natural in-
terface with general ML frameworks such as PyTorch [49] and
Tensorflow [50]. On the algorithmic side, future goals include
the extension of NetKet to incorporate unitary dynamics [11,
51], convenient Fermionic operators, as well as full support for
density-matrix tomography [17].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We acknowledge support from the Flatiron Institute of the
Simons Foundation. J.E.T.S. gratefully acknowledges support from
a fellowship through The Molecular Sciences Software Institute
under NSF Grant ACI1547580. H.T. is supported by a grant from
the Fondation CFM pour la Recherche. S.E. and I.G. are supported
by an ERC Advanced Grant QENOCOBA under the EU Horizon2020
program (grant agreement 742102) and the German Research
Foundation (DFG) under Germany’s Excellence Strategy through
Project No. EXC-2111 - 390814868 (MCQST).

This project makes use of other open source software, namely
pybind11 [16], Eigen [19], nlohmann/json [21], NumPy [20], and
SciPy [18].

Pre-release versions of NetKet 2.0 have used a Lanczos solver
based on the IETL library from the ALPS project [52,53], which
implements a variant of the Lanczos algorithm due to Cullum and
Willoughby [54,55].

We further acknowledge discussions with, as well as bug
reports, comments, and support from S. Arnold, A. Booth, A. Borin,
J. Carrasquilla, C. Ciuti, S. Lederer, Y. Levine, T. Neupert, O. Par-
collet, A. Rubio, M. A. Sentef, O. Sharir, M. Stoudenmire, and
N. Wies.

References

[1] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L,
Zdeborová L. Machine learning and the physical sciences. 2019, arXiv:
1903.10563.

[2] Carleo G, Troyer M. Solving the quantum many-body problem with ar-
tificial neural networks. Science 2017;355(6325):602–6. http://dx.doi.org/
10.1126/science.aag2302, URL http://science.sciencemag.org/content/355/
6325/602.

[3] Cai Z, Liu J. Approximating quantum many-body wave functions using arti-
ficial neural networks. Phys Rev B 2018;97(3):035116. http://dx.doi.org/10.
1103/PhysRevB.97.035116, URL https://link.aps.org/doi/10.1103/PhysRevB.
97.035116.

[4] Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R, Carleo G.
Neural-network quantum state tomography. Nat Phys 2018;14(5):447–
50. http://dx.doi.org/10.1038/s41567-018-0048-5, URL https://doi.org/10.
1038/s41567-018-0048-5.

[5] Choo K, Carleo G, Regnault N, Neupert T. Symmetries and many-
body excitations with neural-network quantum states. Phys Rev Lett
2018;121:167204. http://dx.doi.org/10.1103/PhysRevLett.121.167204, URL
https://link.aps.org/doi/10.1103/PhysRevLett.121.167204.

[6] Glasser I, Pancotti N, August M, Rodriguez ID, Cirac JI. Neural-network
quantum states, string-bond states, and chiral topological states. Phys.
Rev. X 2018;8:011006. http://dx.doi.org/10.1103/PhysRevX.8.011006, URL
https://link.aps.org/doi/10.1103/PhysRevX.8.011006.

[7] Kaubruegger R, Pastori L, Budich JC. Chiral topological phases from arti-
ficial neural networks. Phys. Rev. B 2018;97:195136. http://dx.doi.org/10.
1103/PhysRevB.97.195136, URL https://link.aps.org/doi/10.1103/PhysRevB.
97.195136.

[8] Saito H. Solving the bose-hubbard model with machine learning. J Phys
Soc Japan 2017;86(9):093001. http://dx.doi.org/10.7566/JPSJ.86.093001.

[9] Saito H, Kato M. Machine learning technique to find quantum many-body
ground states of bosons on a lattice. J Phys Soc Japan 2018;87(1):014001.
http://dx.doi.org/10.7566/JPSJ.87.014001.

[10] Czischek S, Gärttner M, Gasenzer T. Quenches near ising quantum
criticality as a challenge for artificial neural networks. Phys. Rev.
B 2018;98:024311. http://dx.doi.org/10.1103/PhysRevB.98.024311, URL
https://link.aps.org/doi/10.1103/PhysRevB.98.024311.

[11] Jónsson B, Bauer B, Carleo G. Neural-network states for the classical
simulation of quantum computing. 2018, arXiv:1808.05232, URL http:
//arxiv.org/abs/1808.05232.

[12] Hartmann MJ, Carleo G. Neural-network approach to dissipative quan-
tum many-body dynamics. Phys Rev Lett 2019;122:250502. http://dx.doi.
org/10.1103/PhysRevLett.122.250502, URL https://link.aps.org/doi/10.1103/
PhysRevLett.122.250502.

[13] Yoshioka N, Hamazaki R. Constructing neural stationary states for open
quantum many-body systems. Phys Rev B 2019;99(21):214306. http://dx.
doi.org/10.1103/PhysRevB.99.214306, URL https://link.aps.org/doi/10.1103/
PhysRevB.99.214306.

[14] Nagy A, Savona V. Variational quantum monte carlo method with
a neural-network ansatz for open quantum systems. Phys Rev Lett
2019;122(25):250501. http://dx.doi.org/10.1103/PhysRevLett.122.250501,
URL https://link.aps.org/doi/10.1103/PhysRevLett.122.250501.

[15] Vicentini F, Biella A, Regnault N, Ciuti C. Variational neural-network
ansatz for steady states in open quantum systems. Phys Rev Lett
2019;122(25):250503. http://dx.doi.org/10.1103/PhysRevLett.122.250503,
URL https://link.aps.org/doi/10.1103/PhysRevLett.122.250503.

[16] Jakob W, Rhinelander J, Moldovan D. Pybind11 – seamless operability
between c++11 and python. 2019.

[17] Torlai G, Melko RG. Latent space purification via neural density operators.
Phys Rev Lett 2018;120(24):240503. http://dx.doi.org/10.1103/PhysRevLett.
120.240503, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.240503.

[18] Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for
Python. 2001, URL http://www.scipy.org/. [Online; Accessed 5 July 2019].

[19] Guennebaud G, Jacob B, et al. Eigen v3. 2010.
[20] Oliphant T. NumPy: A Guide to NumPy. USA: Trelgol Publishing; 2006, URL

https://www.numpy.org/.
[21] Lohmann N, et al. JSON for modern C++. GitHub Repository 2019.
[22] McBrian K, Carleo G, Khatami E. Ground state phase diagram of the one-

dimensional bose-Hubbard model from restricted Boltzmann machines.
arXiv:1903.03076.

[23] Choo K, Mezzacapo A, Carleo G. Quantum Chemistry with Neural-Network
Quantum States [in preparation].

[24] Manousakis E. The spin- 1
2 heisenberg antiferromagnet on a square lattice

and its application to the cuprous oxides. Rev Modern Phys 1991;63:1–
62. http://dx.doi.org/10.1103/RevModPhys.63.1, URL https://link.aps.org/
doi/10.1103/RevModPhys.63.1.

[25] Becca F, Sorella S. Quantum Monte Carlo Approaches for Correlated
Systems. first ed. Cambridge University Press; 2017, http://dx.doi.org/10.
1017/9781316417041.

[26] White SR. Density matrix formulation for quantum renormalization groups.
Phys Rev Lett 1992;69(19):2863–6. http://dx.doi.org/10.1103/physrevlett.
69.2863.

[27] Rommer S, Östlund S. Class of ansatz wave functions for one-dimensional
spin systems and their relation to the density matrix renormaliza-
tion group. Phys Rev B 1997;55(4):2164–81. http://dx.doi.org/10.1103/
physrevb.55.2164.

[28] Schollwöck U. The density-matrix renormalization group in the age of
matrix product states. Ann Physics 2011;326(1):96–192. http://dx.doi.org/
10.1016/j.aop.2010.09.012.

[29] Hinton GE. Reducing the dimensionality of data with neural networks.
Science 2006;313(5786):504–7. http://dx.doi.org/10.1126/science.1127647.

[30] LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature 2015;521(7553):436–
44. http://dx.doi.org/10.1038/nature14539.

[31] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.
[32] Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G,

Cai J, Chen T. Recent advances in convolutional neural networks. Pattern
Recognit 2018;77:354–77. http://dx.doi.org/10.1016/j.patcog.2017.10.013,
URL http://www.sciencedirect.com/science/article/pii/S0031320317304120.

[33] Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th international conference on machine
learning. 2010. p. 807–14. URL http://www.icml2010.org/papers/432.pdf.

[34] LeCun Y, Bottou L, Orr GB, Müller K. Efficient BackProp. In: Neural
Networks: Tricks of the Trade. second ed.. 2012, p. 9–48. http://dx.doi.
org/10.1007/978-3-642-35289-8_3.

[35] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online
learning and stochastic optimization. J Mach Learn Res 2011;12(Jul):2121–
59.

[36] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014, CoRR
abs/1412.6980. arXiv:1412.6980, URL http://arxiv.org/abs/1412.6980.

http://arxiv.org/abs/1903.10563
http://arxiv.org/abs/1903.10563
http://arxiv.org/abs/1903.10563
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1126/science.aag2302
http://science.sciencemag.org/content/355/6325/602
http://science.sciencemag.org/content/355/6325/602
http://science.sciencemag.org/content/355/6325/602
http://dx.doi.org/10.1103/PhysRevB.97.035116
http://dx.doi.org/10.1103/PhysRevB.97.035116
http://dx.doi.org/10.1103/PhysRevB.97.035116
https://link.aps.org/doi/10.1103/PhysRevB.97.035116
https://link.aps.org/doi/10.1103/PhysRevB.97.035116
https://link.aps.org/doi/10.1103/PhysRevB.97.035116
http://dx.doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
http://dx.doi.org/10.1103/PhysRevLett.121.167204
https://link.aps.org/doi/10.1103/PhysRevLett.121.167204
http://dx.doi.org/10.1103/PhysRevX.8.011006
https://link.aps.org/doi/10.1103/PhysRevX.8.011006
http://dx.doi.org/10.1103/PhysRevB.97.195136
http://dx.doi.org/10.1103/PhysRevB.97.195136
http://dx.doi.org/10.1103/PhysRevB.97.195136
https://link.aps.org/doi/10.1103/PhysRevB.97.195136
https://link.aps.org/doi/10.1103/PhysRevB.97.195136
https://link.aps.org/doi/10.1103/PhysRevB.97.195136
http://dx.doi.org/10.7566/JPSJ.86.093001
http://dx.doi.org/10.7566/JPSJ.87.014001
http://dx.doi.org/10.1103/PhysRevB.98.024311
https://link.aps.org/doi/10.1103/PhysRevB.98.024311
http://arxiv.org/abs/1808.05232
http://arxiv.org/abs/1808.05232
http://arxiv.org/abs/1808.05232
http://arxiv.org/abs/1808.05232
http://dx.doi.org/10.1103/PhysRevLett.122.250502
http://dx.doi.org/10.1103/PhysRevLett.122.250502
http://dx.doi.org/10.1103/PhysRevLett.122.250502
https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
http://dx.doi.org/10.1103/PhysRevB.99.214306
http://dx.doi.org/10.1103/PhysRevB.99.214306
http://dx.doi.org/10.1103/PhysRevB.99.214306
https://link.aps.org/doi/10.1103/PhysRevB.99.214306
https://link.aps.org/doi/10.1103/PhysRevB.99.214306
https://link.aps.org/doi/10.1103/PhysRevB.99.214306
http://dx.doi.org/10.1103/PhysRevLett.122.250501
https://link.aps.org/doi/10.1103/PhysRevLett.122.250501
http://dx.doi.org/10.1103/PhysRevLett.122.250503
https://link.aps.org/doi/10.1103/PhysRevLett.122.250503
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb16
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb16
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb16
http://dx.doi.org/10.1103/PhysRevLett.120.240503
http://dx.doi.org/10.1103/PhysRevLett.120.240503
http://dx.doi.org/10.1103/PhysRevLett.120.240503
https://link.aps.org/doi/10.1103/PhysRevLett.120.240503
http://www.scipy.org/
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb19
https://www.numpy.org/
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb21
http://arxiv.org/abs/1903.03076
http://dx.doi.org/10.1103/RevModPhys.63.1
https://link.aps.org/doi/10.1103/RevModPhys.63.1
https://link.aps.org/doi/10.1103/RevModPhys.63.1
https://link.aps.org/doi/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1017/9781316417041
http://dx.doi.org/10.1017/9781316417041
http://dx.doi.org/10.1017/9781316417041
http://dx.doi.org/10.1103/physrevlett.69.2863
http://dx.doi.org/10.1103/physrevlett.69.2863
http://dx.doi.org/10.1103/physrevlett.69.2863
http://dx.doi.org/10.1103/physrevb.55.2164
http://dx.doi.org/10.1103/physrevb.55.2164
http://dx.doi.org/10.1103/physrevb.55.2164
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1038/nature14539
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb31
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://www.sciencedirect.com/science/article/pii/S0031320317304120
http://www.icml2010.org/papers/432.pdf
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb35
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb35
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb35
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb35
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb35
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

8 G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311

[37] Reddi SJ, Kale S, Kumar S. On the convergence of adam and beyond.
In: International conference on learning representations. 2018. URL https:
//openreview.net/forum?id=ryQu7f-RZ.

[38] James DFV, Kwiat PG, Munro WJ, White AG. Measurement of qubits. Phys.
Rev. A 2001;64:052312. http://dx.doi.org/10.1103/PhysRevA.64.052312,
URL https://link.aps.org/doi/10.1103/PhysRevA.64.052312.

[39] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equa-
tion of state calculations by fast computing machines. J Chem Phys
1953;21(6):1087–92. http://dx.doi.org/10.1063/1.1699114.

[40] Swendsen RH, Wang J-S. Replica Monte Carlo simulation of spin-glasses.
Phys Rev Lett 1986;57:2607–9. http://dx.doi.org/10.1103/PhysRevLett.57.
2607, URL https://link.aps.org/doi/10.1103/PhysRevLett.57.2607.

[41] Sorella S. Green function Monte Carlo with stochastic reconfiguration. Phys
Rev Lett 1998;80:4558–61. http://dx.doi.org/10.1103/PhysRevLett.80.4558,
URL https://link.aps.org/doi/10.1103/PhysRevLett.80.4558.

[42] Casula M, Sorella S. Geminal wave functions with Jastrow correlation:
A first application to atoms. J Chem Phys 2003;119(13):6500–11. http:
//dx.doi.org/10.1063/1.1604379.

[43] Amari S-i. Natural gradient works efficiently in learning. Neural Comput
1998;10(2):251–76. http://dx.doi.org/10.1162/089976698300017746.

[44] PyPI – the Python package index. https://pypi.org/. [Accessed 6 March
2019].

[45] Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Holdgraf C,
Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y, Perez F, Ragan-Kelley B,
Willing C. Binder 2.0 - Reproducible, interactive, sharable environments for
science at scale. In: Fatih Akici and David Lippa and Dillon Niederhut and
M Pacer, editors, Proceedings of the 17th python in science conference.
2018. p. 113–20. http://dx.doi.org/10.25080/Majora-4af1f417-011.

[46] Choo K, Neupert T, Carleo G. Study of the two-dimensional frustrated
J1-J2 model with neural network quantum states. arXiv:1903.06713. URL
http://arxiv.org/abs/1903.06713.

[47] Vieijra T, Casert C, Nys J, De Neve W, Haegeman J, Ryckebusch J,
Verstraete F. Restricted Boltzmann machines for quantum states with
nonabelian or anyonic symmetries. arXiv:1905.06034. URL http://arxiv.org/
abs/1905.06034.

[48] Pilati S, Inack EM, Pieri P. Self-learning projective quantum Monte Carlo
simulations guided by restricted Boltzmann machines. arXiv:1903.00907.
URL http://arxiv.org/abs/1907.00907.

[49] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z,
Desmaison A, Antiga L, Lerer A. Automatic differentiation in PyTorch. In:
NIPS-W. 2017.

[50] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow:
Large-scale machine learning on heterogeneous systems. 2015, Software
available from . URL http://tensorflow.org/.

[51] Carleo G, Becca F, Schiro M, Fabrizio M. Localization and glassy dynamics
of many-body quantum systems. Sci Rep 2012;2:243. http://dx.doi.org/10.
1038/srep00243.

[52] Bauer B, Carr LD, Evertz HG, Feiguin A, Freire J, Fuchs S, Gamper L,
Gukelberger J, Gull E, Guertler S, Hehn A, Igarashi R, Isakov SV, Koop D,
Ma PN, Mates P, Matsuo H, Parcollet O, Pawłowski G, Picon JD, Pollet L,
Santos E, Scarola VW, Schollwöck U, Silva C, Surer B, Todo S, Trebst S,
Troyer M, Wall ML, Werner P, Wessel S. The ALPS project release 2.0:
open source software for strongly correlated systems. J Stat Mech Theory
Exp 2011;2011(05):P05001. http://dx.doi.org/10.1088/1742-5468/2011/05/
p05001, URL https://doi.org/10.1088/1742-5468/2011/05/p05001.

[53] Albuquerque A, Alet F, Corboz P, Dayal P, Feiguin A, Fuchs S, Gamper L,
Gull E, Gürtler S, Honecker A, Igarashi R, Körner M, Kozhevnikov A,
Läuchli A, Manmana S, Matsumoto M, McCulloch I, Michel F, Noack R,
Pawłowski G, Pollet L, Pruschke T, Schollwöck U, Todo S, Trebst S,
Troyer M, Werner P, Wessel S. The ALPS project release 1.3: Open-
source software for strongly correlated systems. J Magn Magn Mater
2007;310(2):1187–93. http://dx.doi.org/10.1016/j.jmmm.2006.10.304, URL
https://doi.org/10.1016/j.jmmm.2006.10.304.

[54] Cullum J, Willoughby RA. Computing eigenvalues of very large symmetric
matrices—An implementation of a lanczos algorithm with no reorthogonal-
ization. J Comput Phys 1981;44(2):329–58. http://dx.doi.org/10.1016/0021-
9991(81)90056-5.

[55] Cullum J, Willoughby RA. Lanczos Algorithms for Large Symmetric Eigen-
value Computations Vol. I Theory (Progress in Scientific Computing)
(Volume 1). Birkhäuser; 1985.

https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://dx.doi.org/10.1103/PhysRevA.64.052312
https://link.aps.org/doi/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.57.2607
https://link.aps.org/doi/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1103/PhysRevLett.80.4558
https://link.aps.org/doi/10.1103/PhysRevLett.80.4558
http://dx.doi.org/10.1063/1.1604379
http://dx.doi.org/10.1063/1.1604379
http://dx.doi.org/10.1063/1.1604379
http://dx.doi.org/10.1162/089976698300017746
https://pypi.org/
http://dx.doi.org/10.25080/Majora-4af1f417-011
http://arxiv.org/abs/1903.06713
http://arxiv.org/abs/1903.06713
http://arxiv.org/abs/1905.06034
http://arxiv.org/abs/1905.06034
http://arxiv.org/abs/1905.06034
http://arxiv.org/abs/1905.06034
http://arxiv.org/abs/1903.00907
http://arxiv.org/abs/1907.00907
http://tensorflow.org/
http://dx.doi.org/10.1038/srep00243
http://dx.doi.org/10.1038/srep00243
http://dx.doi.org/10.1038/srep00243
http://dx.doi.org/10.1088/1742-5468/2011/05/p05001
http://dx.doi.org/10.1088/1742-5468/2011/05/p05001
http://dx.doi.org/10.1088/1742-5468/2011/05/p05001
https://doi.org/10.1088/1742-5468/2011/05/p05001
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/0021-9991(81)90056-5
http://dx.doi.org/10.1016/0021-9991(81)90056-5
http://dx.doi.org/10.1016/0021-9991(81)90056-5
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb55
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb55
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb55
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb55
http://refhub.elsevier.com/S2352-7110(19)30097-4/sb55

	NetKet: A machine learning toolkit for many-body quantum systems
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Model specification
	Variational quantum states
	Supervised learning
	Unsupervised learning
	Variational Monte Carlo

	Illustrative examples
	One-dimensional Heisenberg model
	Supervised learning

	Impact
	Conclusions and future directions
	Declaration of competing interest
	Acknowledgments
	References

