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a b s t r a c t

We introduce NetKet, a comprehensive open source framework for the study of many-body quantum
systems using machine learning techniques. The framework is built around a general and flexible
implementation of neural-network quantum states, which are used as a variational ansatz for quantum
wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and
quantum technology, namely quantum state tomography, supervised learning from wavefunction data,
and ground state searches for a wide range of customizable lattice models. Our aim is to provide a
common platform for open research and to stimulate the collaborative development of computational
methods at the interface of machine learning and many-body physics.
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1. Motivation and significance

Recent years have seen a tremendous activity around the
development of physics-oriented numerical techniques based on
machine learning (ML) tools [1]. In the context of many-body
quantum physics, one of the main goals of these approaches is
to tackle complex quantum problems using compact represen-
tations of many-body states based on artificial neural networks.
These representations, dubbed neural-network quantum states
(NQS) [2], can be used for several applications. In the supervised
learning setting, they can be used, e.g., to learn existing quantum
states for which a non-NQS representation is available [3]. In
the unsupervised setting, they can be used to reconstruct com-
plex quantum states from experimental measurements, a task
known as quantum state tomography [4]. Finally, in the context
of purely variational applications, NQS can be used to find ap-
proximate ground- and excited-state solutions of the Schrödinger
equation [2,5–9], as well as to describe unitary [2,10,11] and
dissipative [12–15] many-body dynamics. Despite the increas-
ing methodological and theoretical interest in NQS and their
applications, a set of comprehensive, easy-to-use tools for re-
search applications is still lacking. This is particularly pressing
as the complexity of NQS-related approaches and algorithms is
expected to grow rapidly given these first successes, steepening
the learning curve.

The goal of NetKet is to provide a set of primitives and flexible
tools to ease the development of cutting-edge ML applications for
quantum many-body physics. NetKet also wants to help bridge
the gap between the latest and technically demanding develop-
ments in the field and those scholars and students who approach
the subject for the first time. Pedagogical tutorials are provided to
this aim. Serving as a common platform for future research, the
NetKet project is meant to stimulate the open and easy-to-certify
development of new methods and to provide a common set of
tools to reproduce published results.

A central philosophy of the NetKet framework is to provide
tools that are as simple as possible to use for the end user. Given
the huge popularity of the Python programming language and
of the many accompanying tools gravitating around the Python
ecosystem, we have built NetKet as a full-fledged Python library.
This simplicity of use however does not come at the expense of
performance. With this efficiency requirement in mind, all critical
routines and components of NetKet have been written in C++11.

2. Software description

We will first give a general overview of the structure of the
code in Section 2.1 and then provide additional details on the
functionality of NetKet in Section 2.2.

2.1. Software architecture

The core of NetKet is implemented in C++. For ease of use
and in order to facilitate the integration with other frameworks,
a Python interface is provided, which exposes all high-level func-
tionality from the C++ core via pybind11 [16] bindings. Use
of the Python interface is recommended for users building on
the library for research purposes, while the C++ code should be
modified for extending the NetKet library itself.

NetKet is divided into several submodules. The modules
graph, hilbert, and operator contain the classes necessary
for specifying the structure of the many-body Hilbert space, the
Hamiltonian, and other observables of a quantum system.

The core component of NetKet is the machine module, which
provides different variational representations of the quantum
wavefunction, particularly in the form of NQS. Encodings of mixed

states, needed to describe dissipative quantum system, are im-
plemented in the machine.densitymatrix submodule in the
form of Neural Density Operators (NDO) [17]. The variational,
supervised, and unsupervisedmodules contain driver classes
for energy optimization, supervised learning, and quantum state
tomography, respectively. These driver classes are supported by
the sampler and optimizer modules, which provide classes for
performing Variational Monte Carlo (VMC) sampling and opti-
mization steps.

The exact module provides functions for exact diagonaliza-
tion (ED) based on SciPy [18] and time propagation of the full
quantum state, in order to allow for easy benchmarking and
exploration of small systems within the NetKet framework. The
NetKet operator classes implement the SciPy linear-operator in-
terface and can also be converted to sparse and dense matrices,
providing interoperability with Python code. In particular, the
sparse and dense ED routines provided by the exact module
are implemented as thin wrappers around SciPy functionality.
The dynamics module provides basic ODE solvers for exact time
propagation.

The utility modules output, stats, and util contain some
additional functionality for output and statistics that is used
internally in other parts of NetKet.

An overview of the most important modules and their de-
pendencies is given in Fig. 1. A more detailed description of the
module contents will be given in the next section.

NetKet uses the Eigen 3 library [19] for linear algebra routines.
In the Python interface, Eigen datatypes are transparently con-
verted to and from NumPy [20] arrays by pybind11. The NetKet
driver classes provide methods to directly write the simulation
output to JSON files, which is done with the help of the nlohman-
n/json library for C++ [21]. Parallelization is implemented based
on the Message Passing Interface (MPI), allowing to substantially
decrease running time. Specifically, the Monte Carlo sampling of
expectation values implemented in the variational.Vmc class
is parallelized, with each node drawing independent samples
from the probability distribution which are averaged over all
nodes.

2.2. Software functionalities

The core feature of NetKet is the variational representation of
quantum states by artificial neural networks. Given a variational
state, the task is to optimize its parameters with regard to a
specified loss function, such as the total energy for ground state
searches or the (negative) overlap with a given target state. In
this section, we will discuss the models, types of variational
wavefunctions, and learning schemes that are available in NetKet.

2.2.1. Model specification
NetKet currently supports lattice models with a finite Hilbert

space of the form H = H⊗N
local where N denotes the number of

lattice sites and Hlocal denotes the local Hilbert space of each
site. The system is defined on a graph with a set of N sites and
a set of edges (also called bonds) between pairs of sites. This
graph structure is used to help with the definition of operators
on the lattice and to encode the spatial structure of the model,
which is necessary, e.g., to work with convolutional neural net-
works (CNNs). NetKet provides the predefined Hypercube and
Lattice graphs. Furthermore, CustomGraph supports arbitrary
edge-colored graphs, where each edge is associated with an in-
teger label called its color. This color can be used to describe
different types of bonds.

General lattice spin models can be described straightforwardly
in this manner. Bosonic lattice models can also be easily rep-
resented by truncating the local Hilbert space to only allow for
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Fig. 1. The main submodules of the netket Python module and their dependencies from a user perspective (i.e., only dependencies in the public interface are
shown). Below each submodule, examples of contained classes and functions are displayed. In a typical workflow, users will first define a quantum model, specify a
variational representation of the wavefunction as well as the Monte Carlo sampling and optimization methods, and then run the simulation using one of the driver
classes. A more detailed description of the software architecture and features is given in the main text.

occupations of up to Nlocal bosons per site [22]. NetKet currently
provides pre-defined Hamiltonians for the transverse-field Ising,
Heisenberg, and Bose–Hubbard models. Other observables and
custom Hamiltonians can also be specified: a convenient option
for common lattice models is to use the GraphOperator class,
which allows to construct a Hamiltonian from a family of 2-local
operators acting on each bond of a selected color and a family of
1-local operators acting on each site. It is also possible to specify
general k-local operators (as well as their products and sums)
using the LocalOperator class.

While fermionic Hamiltonians are not fully supported in the
present version, they can be implemented using a custom Jordan–
Wigner mapping and the LocalOperator class [23].

2.2.2. Variational quantum states
The purpose of variational states is to provide a compact and

computationally efficient representation of quantum states. Since
generally only a subset of the full many-body Hilbert space will
be covered by a given variational ansatz, the aim is to use a
parametrization that captures the relevant physical states for a
given problem.

The variational wavefunctions supported by NetKet are pro-
vided as part of the machine module, which currently includes
NQS but also Jastrow wavefunctions [24,25] and matrix-product
states (MPS) [26–28].

Broadly, there are two main types of NQS available in NetKet:
restricted Boltzmann machines (RBM) [29] and feed-forward neu-
ral networks (FFNN) [8,9,30,31]. Both types of networks are fully
complex, i.e., with both complex-valued parameters and output.

The machine module contains the RbmSpin class for spin-
1
2 systems as well as two other variants: the symmetric RBM
(RbmSpinSymm) to capture lattice symmetries such as translation
and inversion symmetries and the multi-valued RBM

(RbmMultiVal) for systems with larger local Hilbert spaces (such
as higher spins or bosonic systems).

FFNNs represent a broad and flexible class of networks and are
implemented by the FFNN class. They consist of a sequence of lay-
ers available from the layer submodule, each layer performing
either an affine transformation to the input vector or applying a
non-linear activation function. There are currently two types of
affine maps available:

• Dense fully-connected layers, which for an input x ∈ Cn and
output y ∈ Cm have the form y = Wx+ b where W ∈ Cm×n

and b ∈ Cm are called the weight matrix and bias vector,
respectively.

• Convolutional layers [30,32] for hypercubic lattices.

As activation functions, rectified linear units (Relu) [33], hy-
perbolic tangent (Tanh) [34], and the logarithm of the hyper-
bolic cosine (Lncosh) are provided. RBMs without visible bias
can be represented as single-layer FFNNs with ln cosh activa-
tion, allowing for a generalization of these machines to multiple
layers [5].

The machine module also provides more traditional varia-
tional wavefunctions, namely MPS with periodic boundary con-
ditions (MPSPeriodic) and long-range Jastrow (Jastrow) wave-
functions, which allows for comparison of NQS with results ob-
tained using these approaches.

Finally, NetKet also includes representations of mixed states
in the machine.densitymatrix submodule, which most no-
tably includes the real-valued NDO ansatz (NdmSpinPhase). For
compatibility with the rest of the package, the vectorized repre-
sentation of density matrices can be accessed through the same
interface as NQS.

Customwavefunctions may be provided by implementing sub-
classes of the AbstractMachine class in C++ or in Python by
deriving netket.machine.CxxMachine.
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2.2.3. Supervised learning
In supervised learning, a target wavefunction is given and

the task is to optimize a chosen ansatz to represent it. This
functionality is contained within the supervised module. Given
a variational state |ΨNN(α)⟩ depending on the parameters α ∈ Cm

and a target state |Ψtar⟩, the negative log overlap

L(α) = − log
⟨Ψtar|ΨNN(α)⟩

⟨Ψtar|Ψtar⟩

⟨ΨNN(α)|Ψtar⟩

⟨ΨNN(α)|ΨNN(α)⟩
(1)

is taken as the loss function to be minimized. The loss is com-
puted in a Monte Carlo fashion by direct sampling of the target
wavefunction. To minimize the loss, the gradient ∇α L of the
loss function with respect to the parameters is calculated. This
gradient is then used to update the parameters according to a
specified gradient-based optimization scheme. For example, in
stochastic gradient descent (SGD) the parameters are updated as

α → α − λ∇αL (2)

where λ is the learning rate. The different update rules supported
by NetKet are contained in the optimizermodule. Various types
of optimizers are available, including SGD, AdaGrad [35], AdaMax
and AdaDelta [36], AMSGrad [37], and RMSProp.

2.2.4. Unsupervised learning
NetKet also allows to carry out unsupervised learning of un-

known probability distributions, which in this context corre-
sponds to quantum state tomography [38]. Given an unknown
quantum state, a neural network can be trained on projective
measurement data to discover an approximate reconstruction of
the state [4]. In NetKet, this functionality is contained within the
unsupervised.Qsr class.

For some given target quantum state |Ψtar⟩, the training
dataset D consists of a sequence of projective measurements
σb in different bases b, with underlying probability distribution
P(σb) = |Ψtar(σb)|2. The quantum reconstruction of the target
state translates into minimizing the statistical divergence be-
tween the distribution of the measurement outcomes and the
distribution generated by the NQS. This corresponds, up to a
constant dataset entropy contribution, to maximizing the log-
likelihood of the network distribution over the measurement data

L =

∑
σb∈D

logπ (σb) , (3)

where π denotes the probability distribution

π (σ) =
|ΨNN(σ)|2∑
σ′ |ΨNN(σ ′)|2

. (4)

generated by the NQS wavefunction.
Note that, for every training sample where the measurement

basis differs from the reference basis |σ⟩ of the NQS, a unitary
transformation Û should be applied to appropriately change the
basis, ΨNN(σb) = ÛbΨNN(σ).

The network parameters are updated according to the gradient
of the log-likelihood L. This can be computed analytically, and
it requires expectation values over both the training data points
and the network distribution π (σ). While the first is trivial to
compute, the latter should be approximated by a Monte Carlo
average over configurations sampled from a Markov chain.

2.2.5. Variational Monte Carlo
Finally, NetKet supports ground state searches for a given

many-body quantum Hamiltonian Ĥ . In this context, the task is to
optimize the parameters of a variational wavefunction Ψ in order

Fig. 2. Variational optimization of the restricted Boltzmann machine for the
one-dimensional spin- 1

2 Heisenberg model. The main plot shows the Monte
Carlo energy estimate, which converges to the exact ground state energy up
to a relative error |(E − Eexact)/Eexact| of 4.16 × 10−5 within the 200 iteration
steps shown. The inset shows the Monte Carlo estimate of the energy variance,
which becomes zero in an exact eigenstate of the Hamiltonian.

to minimize the energy ⟨Ĥ⟩. The variational.Vmc driver class
contains the main logic to optimize a variational wavefunction
given a Hamiltonian, a sampler, and an optimizer.

The energy of a wavefunction Ψ (σ) = ⟨σ|Ψ ⟩ can be estimated
as

⟨Ĥ⟩ =

∑
σ,σ′ Ψ

∗(σ) ⟨σ| Ĥ |σ ′
⟩ Ψ (σ ′)∑

σ |Ψ (σ)|2

=

∑
σ

(∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

)
|Ψ (σ)|2∑
σ′ |Ψ (σ ′)|2

≈

⟨∑
σ′

⟨σ| Ĥ |σ ′
⟩

Ψ (σ ′)
Ψ (σ)

⟩
σ

(5)

where in the last line ⟨ · ⟩σ denotes a stochastic expectation value
taken over a sample of configurations {σ} drawn from the proba-
bility distribution corresponding to the variational wavefunction
(4). This sampling is performed by classes from the sampler
module, which generate Markov chains of configurations using
the Metropolis algorithm [39] to ensure detailed balance. Parallel
tempering [40] options are also available to improve sampling
efficiency.

In order to optimize the parameters of a machine to minimize
the energy, a gradient-based optimization scheme can be applied
as discussed in the previous section. The energy gradient can be
estimated at the same time as ⟨Ĥ⟩ [2,25]. This requires computing
the partial derivatives of the wavefunction with respect to the
variational parameters, which can be obtained analytically for the
RBM [2] or via backpropagation [30,31,34] for multi-layer FFNNs.
In this case, the steepest descent update according to Eq. (2) is
also a form of SGD, because the energy is estimated using a sub-
set of the full data available from the variational wavefunction.
Alternatively, often more stable convergence can be achieved by
using the stochastic reconfiguration (SR) method [41,42], which
approximates the imaginary time evolution of the system on
the submanifold of variational states. The SR approach is closely
related to the natural gradient descent method used in machine
learning [43]. In the NetKet implementation, SR is performed
using either an exact or an iterative linear solver, the latter being
recommended when the number of variational parameters is
large.

Information on the optimization run (sampler acceptance
rates, energy, energy variance, expectation of additional observ-
ables, and the current variational parameters) for each iteration



G. Carleo, K. Choo, D. Hofmann et al. / SoftwareX 10 (2019) 100311 5

1 import netket as nk
2
3 # Define the graph : a 1D chain of 20 s i t e s with periodic
4 # boundary conditions
5 g = nk . graph . Hypercube ( length =20 , n_dim=1 , pbc=True )
6
7 # Define the Hi lbert Space : spin ha l f degree of freedom at each
8 # s i t e of the graph , r e s t r i c t ed to the zero magnetization sector
9 hi = nk . h i lbe r t . Spin ( s =0 .5 , to ta l _ sz =0 .0 , graph=g )

10
11 # Define the Hamiltonian : spin ha l f Heisenberg model
12 ha = nk . operator . Heisenberg ( h i lbe r t =hi )
13
14 # Define the ansatz : Restr ic ted Boltzmann machine
15 # with 20 hidden units
16 ma = nk . machine . RbmSpin( h i lbe r t =hi , n_hidden=20)
17
18 # I n i t i a l i s e with machine parameters
19 ma. init_random_parameters ( seed=1234 , sigma=0.01)
20
21 # Define the Sampler : metropolis sampler with loca l
22 # exchange moves , i . e . nearest neighbour spin swaps
23 # which preserve the to t a l magnetization
24 sa = nk . sampler . MetropolisExchange ( graph=g , machine=ma)
25
26 # Define the optimiser : Stochast ic gradient descent with
27 # learning rate 0 .01 .
28 opt = nk . optimizer . Sgd ( learning_rate =0.01)
29
30 # Define the VMC object : Stochast ic Reconfiguration " Sr " i s used
31 gs = nk . va r i a t iona l .Vmc( hamiltonian=ha , sampler=sa ,
32 optimizer=opt , n_samples=1000 ,
33 use_ i te ra t ive =True , method= ’ Sr ’ )
34
35 # Run the VMC simulation for 1000 i t e ra t i ons
36 # and save the output into f i l e s with pref ix " tes t "
37 # The machine parameters are stored in " tes t . wf"
38 # while the measurements are stored in " tes t . log "
39 gs . run ( output_prefix= ’ t e s t ’ , n_ i ter =1000)

Listing 1: Example script for finding the ground state of the one-dimensional spin- 12 Heisenberg model using an RBM ansatz.

can be written to a log file in JSON format. Alternatively, they can
be accessed directly inside the simulation loop in Python to allow
for more flexible output.

3. Illustrative examples

NetKet is available as a Python package and can be obtained
from the Python package index (PyPI) [44]. Assuming a properly
configured Python environment, NetKet can be installed via the
shell command

pip install netket

which will download, compile, and install the package. A working
MPI environment is required to run NetKet. In case multiple MPI
installations are present on the system and in order to avoid po-
tential conflicts, we recommend to run the installation command
as

CC=mpicc CXX=mpicxx pip install netket

with the desired MPI environment loaded in order to perform the
build with the correct compiler. After a successful installation, the
NetKet module can be imported in Python scripts.

Alternatively to installing NetKet locally, NetKet also uses the
deployment of BinderHub from mybinder.org [45] to build and
deploy a stable version of the software, which can be found at
https://mybinder.org/v2/gh/netket/netket/v.2.0. This allows users
to run the tutorials or other small jobs without installing NetKet.

Fig. 3. Supervised learning of the ground state of the one-dimensional spin- 1
2

transverse field Ising model with 10 sites from ED data, using an RBM with 20
hidden units. The blue line shows the overlap between the RBM wavefunction
and the exact wavefunction for each iteration.

3.1. One-dimensional Heisenberg model

As a first example, we present a Python script for obtaining a
variational RBM representation of the ground state of the spin-
1
2 Heisenberg model on a one-dimensional chain with periodic
boundary conditions. The code for this example is shown in
Listing 1. Fig. 2 shows the evolution of the energy expectation
value over the course of the optimization run. We see that for
a small chain of 20 sites and an RBM with 20 hidden units, the

https://mybinder.org/v2/gh/netket/netket/v.2.0
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1 import netket as nk
2 from numpy import log
3
4 # 1D La t t i ce
5 g = nk . graph . Hypercube ( length =10 , n_dim=1 , pbc=True )
6
7 # Hilbert space of spins on the graph
8 hi = nk . h i lbe r t . Spin ( s =0 .5 , graph=g )
9

10 # Is ing spin Hamiltonian
11 ha = nk . operator . I s ing (h=1.0 , h i lbe r t =hi )
12
13 # Perform Exact Diagonal izat ion to get lowest eigenvector
14 res = nk . exact . lanczos_ed (ha , f i r s t _n =1 , compute_eigenvectors=True )
15
16 # Store eigenvector as a l i s t of t ra in ing samples and targets
17 # The samples would be the Hi lbert space conf igurat ions and
18 # the targets should be wavefunction amplitudes .
19 hind = nk . h i lbe r t . HilbertIndex ( hi )
20 h_size = hind . n_states
21 targets = [ [ log ( res . eigenvectors [ 0 ] [ i ] ) ] for i in range ( h_size ) ]
22 samples = [ hind . number_to_state ( i ) for i in range ( h_size ) ]
23
24 # Machine : Restr ic ted Boltzmann machine
25 # with 20 hidden units
26 ma = nk . machine . RbmSpin( h i lbe r t =hi , n_hidden=20)
27 ma. init_random_parameters ( seed=1234 , sigma=0.01)
28
29 # Optimizer
30 op = nk . optimizer . AdaMax( )
31
32 # Supervised Learning module
33 spvsd = nk . supervised . Supervised (machine=ma,
34 optimizer=op ,
35 batch_size =400 ,
36 samples=samples ,
37 targets = targets )
38
39 # Run the optimization for 2000 i t e ra t i ons
40 spvsd . run ( n_ i ter =2000 , output_prefix= ’ t e s t ’ ,
41 loss_funct ion="Overlap_phi " )

Listing 2: Example script for supervised learning. A RBM ansatz is optimized to represent the ground state of the one-dimensional
spin- 12 transverse field Ising model obtained by ED for this example.

energy converges to a relative error of the order 10−5 within
about 100 iteration steps.

3.2. Supervised learning

As a second example, we use the supervised learning module
in NetKet to optimize an RBM to represent the ground state of
the transverse field Ising model. The example script is shown in
Listing 2. The exact ground state wavefunction is first obtained by
exact diagonalization and then used for training the RBM state by
minimizing the overlap loss (1). Fig. 3 shows the evolution of the
overlap over the training iterations.

4. Impact

Given the flexibility of NetKet, we envision several poten-
tial applications of this library both in data-driven experimental
research and in more theoretical, problem-driven research on
interacting quantum many-body systems. For example, several
important theoretical and practical questions concerning the ex-
pressibility of NQS, the learnability of experimental quantum
states, and the efficiency at finding ground states of k-local Hamil-
tonians, can be directly addressed using the current functionality
of the software.

Moreover, having an easy-to-extend set of tools to work with
NQS-based applications can propel future research in the field,
without researchers having to pay a significant cost of entry in

terms of algorithm implementation and testing. Since its early
release in April 2017, NetKet has already been used for research
purposes by several groups worldwide [5,22,23,46–48]. We also
hope that, building upon a common set of tools, practices like
publishing accompanying codes to research papers, largely pop-
ular in the ML community, can become standard practice also for
ML applications in quantum physics.

Finally, for a fast-growing community like ML for quantum
science, it is also crucial to have pedagogical tools available that
can be conveniently used by new generations of students and
researchers. Benefiting from a growing set of tutorials and step-
by-step explanations, NetKet can be comfortably used in schools
and lectures.

5. Conclusions and future directions

We have introduced NetKet, a comprehensive open source
framework for the study of many-body quantum systems us-
ing machine learning techniques. Central to this framework are
variational parameterizations of many-body wavefunctions in the
form of artificial neural networks. NetKet is a Python framework
implemented in C++11, designed with efficiency as well as ease
of use in mind. Several examples, tutorials, and notebooks are
provided with our software in order to reduce the learning curve
for newcomers.
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The NetKet project is meant to continuously evolve in fu-
ture releases, welcoming suggestions and contributions from its
users. For example, future versions may provide a natural in-
terface with general ML frameworks such as PyTorch [49] and
Tensorflow [50]. On the algorithmic side, future goals include
the extension of NetKet to incorporate unitary dynamics [11,
51], convenient Fermionic operators, as well as full support for
density-matrix tomography [17].
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