Symbolic extensions for 3-dimensional diffeomorphisms
Résumé
We prove that every $\mathcal{C}^{r}$ diffeomorphism with $r>1$ on a three-dimensional manifold admits symbolic extensions, i.e. topological extensions which are subshifts over a finite alphabet. This answers positively a conjecture of Downarowicz and Newhouse in dimension three.
Origine | Fichiers produits par l'(les) auteur(s) |
---|