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SYMBOLIC EXTENSIONS FOR 3-DIMENSIONAL DIFFEOMORPHISMS

DAVID BURGUET * AND GANG LIAO **

ABSTRACT. We prove that every C" diffeomorphism with » > 1 on a three-dimensional man-
ifold admits symbolic extensions, i.e. topological extensions which are subshifts over a finite
alphabet. This answers positively a conjecture of Downarowicz and Newhouse in dimension
three.

1. INTRODUCTION

A symbolic extension of a topological dynamical system is a topological extension given
by a subshift over a finite alphabet. Existence and entropy of symbolic extensions have been
intensively investigated in the last decades. M. Boyle and T. Downarowicz [3] characterized the
problem of existence in terms of new entropic invariants related to weak expansiveness properties
of the system. In particular asymptotically h-expansive systems always admit principal symbolic
extensions, i.e. extensions that preserve the entropy of invariant measures [4].

For smooth systems on compact manifolds this theory appears to be of high interest. It
is well known that Markov partitions allow to encode uniformly hyperbolic systems by finite-
to-one symbolic extensions of finite type. Beyond uniform hyperbolicity, partially hyperbolic
diffeomorphisms with one dimensional center satisfy the h-expansiveness property, hence ad-
mit principal symbolic extensions [12, 18]. More recently the second author with M. Viana
and J. Yang showed that smooth systems with no principal symbolic extension are C'-close to
diffeomorphisms with homoclinic tangencies [17].

Moreover the existence of symbolic extensions depends on the order of smoothness. While
C® systems are asymptotically h-expansive [8, 24] and thus admit principal symbolic extensions,
there is a C' open set of 3-dimensional diffeomorphisms [1] (resp. Lebesgue preserving diffeomor-
phisms [9, 15]) in which generic ones have no symbolic extension. In intermediate smoothness,
i.e. for C” systems with 1 < 7 < +00, the existence was conjectured by T. Downarowicz and S.
Newhouse in [15] and in general this problem is still open. It has been first proved for circle maps
by T. Downarowicz and A. Maass [14] and then by the first author for surface diffeomorphisms
[5, 6]. In this paper we continue the work of [6] to show existence of symbolic extensions for
diffeomorphisms in dimension 3. We refer to the next section for the definitions and notations
used in our main Theorem below.

Main Theorem. Let f be a C" diffeomorphism withr > 1 on a compact 3-dimensional manifold
M. Then f admits a symbolic extension 7 : (Y, S) = (M, f) satisfying for all i1 € Min,(f):
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M (i) + A (1)
EGMI‘"{Q%}){ TE=p h(S7 5) - h(f’ /J/) + r—1

)

where X (f, 1) > A\J (f, 1) denote the positive parts of the two largest Lyapunov exponents of .

The ingredient of the present advance is mainly a new inequality relating the Newhouse
local entropy of an ergodic measure and the local volume growth of smooth discs of unstable
dimension (which is the number of positive Lyapunov exponents of the measure). Section 3 is
devoted to the proof of this key estimate. Then for a 3-dimensional diffeomorphism, we may
bound from above the Newhouse local entropy with respect to either f or f~! by the local
volume growth of curves, which implies the existence of symbolic extensions by combining with
the Reparametrization Lemma developed in [6]. This is proved together with the Main Theorem
in the last section.

2. PRELIMINARIES

2.1. Newhouse entropy structure and the Symbolic Extension Theorem. Consider a
topological system (M, f), i.e. a continuous map f : M — M on a compact metric space (M, d).
For x € M,e > 0,n € N, we denote the n-step dynamical ball at = with radius € by

Bn(m,e,f):{yeM:d(fi(m),fi(y)) <e 1=0,--- an_l}'

A subset N of M is said (n,§)-separated when any pair y # z in N satisfies d(f*(y), fi(z)) > 6
for some i € [0,n — 1]. For any subset A of M and § > 0, denote by s(n,d, A) the maximal
cardinality of the (n, §)-separated sets contained in A. For any A C M, ¢ > 0, define

1
h*(f,A,e) = lim limsup — log sup s (n, §, By (x,e, f) NA).
=0 nooo N xEA
Denote by M, (f) (resp. Merg(f)) the set of all f-invariant (resp. ergodic f-invariant) Borel
probability measures endowed with the usual metrizable weak-* topology. Given p € M.q(f),
for any € > 0, Newhouse [20] defined the tail entropy of p at the scale € by letting

W(fe)= i nf B(f A€,

For € Miny(f), assuming p = fMerg(f) vdL,(v) is the ergodic decomposition of p, let

B (foee) = /M L)

Entropy structures are particular non-increasing sequences of nonnegative functions defined
on Min,(f) which are converging pointwisely to the Kolmogorov-Sinai entropy function h :
Minys(f) — RT (see [13] for a precise definition). They satisfy the following criterion for the
existence of symbolic extensions.

Theorem 1 (Symbolic Extension Theorem [3, 11]). Let (M, f) be a topological system. Assume
E is a nonnegative affine upper semicontinuous function such that for all p € M, (f) there is
an entropy structure (hy)y satisfying

(1) lim limsup (E+h—hg)(v) < E(p).
k Merg(f)ay_ﬂ"
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Then there exists a symbolic extension w: (Y,S) — (M, f) such that

max h(S, &) =(E+h .

cent, B o S = ) (1)
Letting €, — 0, then the sequence (hy ")y defined by hY¥(f,u) = h(f,p) — h*(f, p,ek)
for all k € N and for all ;1 € M, (f) is an entropy structure [13]. As a matter of fact, for any
m € Z\ {0}, h%e,f’(f, w) = h(f,u) — ﬁh*(f’”,,u’gk) for all £ € N and for all p € M, (f) is

also an entropy structure (see Lemma 1 in [0]).

2.2. Lyapunov exponents. Let f : M — M be a differentiable map on a compact Riemannian
manifold (M, || -||) of dimension d. Given x € M, the Lyapunov exponent relative to a direction
v € T, M is the exponential growth rate given by the limit

1
(2) lim —log || D, f™v||,
n—oo M

which exists for almost every point x with respect to every f-invariant Borel probability measure
1 by Oseledets theorem [21] (it does not depend on the Riemannian structure on M). Moreover,
for p-almost every point x, there exist values A (f,z) > -+ > Ag(f,z) of the limit (2) and
measurable flags of the tangent spaces {0} = G4t ¢ G4 C --- C GL = T, M satisfying:

1 o
lim —log || D, f™v| = \i(f,2), Vv e GL\GLt, 1<i<d.
n—oo N

For any p € M, (f), 1 <14 <d, we denote

(o) = / N(f, ) du(a),

DN (fom) = /Z A (f,z) du(a).

For v € Merq(f), we have A\;(f,v) = \i(f, ) for all i and for v-almost every x. By standard
arguments the function p +— Z;Zl )\j( f, ) defines an affine upper semicontinuous function on

Miny(f) (see Lemma 3 in [6]). For a C" diffeomorphism with » > 1 on a compact 3-dimensional

S AT (£
B ===

Riemannian manifold, we will prove that satisfies Inequality (1), which together

with Theorem 1 implies the Main Theorem.

2.3. Nonuniformly hyperbolic estimates. Assume now f is a diffeomorphism. In this case,
Oseledets theorem provides for any pu € M, (f), for p-a.e., x € M, a decomposition on the
tangent space T, M = E$* @ E¥ and p.s(z) < 0 < py(x) satisfying

b | 1|im %IOgHDme('U)” < pes(z), VO #v e ES,
n|—oo

. ‘ llim Llog | Dy f™(w)|| = pul®), VO#we EY
n|—oo

. 1 .

° ‘nlllinooﬁ log sin 4(E;f.i (@)’ E}‘“ (@)
For any A, > 0,0 < v < A\, and k € N, we consider the sets Ax (A, ) consisting of points z in
M with the following properties:

) =0.
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o [[DfMEE I < eFrelihery VieZ, n>1;
* ||Df7n|E}Li(z)|| < efrelihen2tn) - VieZ, n > 1;
o sinZ(B§ ) Efiy) 2 e Fe i, vieZ
From the definition, it holds that [2, 22]
e T,M = FE @ EY is a continuous splitting on each Ag(Ay,7);
b f(Ak:()\ua’y)) c Ak+1()‘u77) and f_l(Ak?()\UJ’Y)) C Ak+1()‘u77) for any ke N7

o 2 Jpeny Ar(Au, ) provided Ay < py(z);

o limy, o i (Upen Ax(Muyv)) =1 for any p € Mino(f).
Now fix A\, and ~. For the sake of statements, we let Ay = Ap(A\y,7y) for any £ € N and
A = Upen Ae(Au, 7). Denote X, = X\, — 2. Given z € A*, define for all v = v.s + v, and
W = Wes + Wy With ves, wes € ES° and vy, w, € EY,

“+o0
< Uegy, Wes > = 2674717 < szn(vcs)anfn(wcs) >,
n=0
+o0
<y, wy > = 262")‘“ < Dy f7™(vy), Do f 7 (wy) >,
n=0
<v,w > = <y, wy > F < Ves, Wes >

There exists a1 = a1(7y) > 1 such that

3) [oll < floll" < are®joll, ¥ v e Ta, M.
The norm || - ||’ is called a Lyapunov metric, with which f behaves uniformly on A*:
1
Wuvcsnl < ”Dxf(UCS)”}(a;) < 62’Y|‘ch||gca
1 / -1 1 Y /

In this manner, the splitting Th»M = E°® @ E" is dominated with respect to |||’ i.e.
[ D f (ves)l' < 27X, [[ves]l”

<e , VO0#uv,s € ES 0#0, € EY, v €A,
1Dz f () I [l
with 2y — X, < 0.
We consider a C" diffeomorphism f on a C” smooth Riemanian manifold (M, | - ||)) with

r > 1. Let & = min{r — 1,1}. We are going to state that the dominated behavior on each Ay

can be extended to a e’kd“f/—neighborhood for 4/ = a~1y. Moreover, for attaining a preassigned
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local proximity of dominated splitting, we may choose a positive number b independently of k
such that this proximity holds in a be*k‘”/—neighborhood of Ay.

Let d be the Riemannian distance on M and r be the radius of injectivity of (M, || - ||). The
ball at € M of radius R € RT with respect to d is denoted by B(z, R). Then for y € B(z,r)
we use the identification

TB(z,r)M ~ B(.T, r) X TQ;M,
(y,v) = (y,Dylexp, ) (v))

to “translate” the vector v € T,M to the vector 0, := D,(exp;!)(v) € T, M. Recall that
the exponential map (z,v) — exp,(v) defines a C™ map (thus C'*®) from TM to M with
D, (exp,) = Idr, 3s. Since the diffeomorphism f is also C1T% on the compact manifold M, there
exist K > 1,as > 0 such that

V€ M, Y(y,v) € Tp(z.anM, Ll < o || < 20|

and ”lei(fh) - Dyfivf(z)” < KHUHd(a:,y)O‘.

For x € A* and (y,v) € Tg(z,a,)M, we define |[v]|}; = [|0.|]" and we also let <, > be the
associated scalar product on T, M. It follows then from (3) that

0 Vo € Ak, ¥(9,0) € Thean M, 2ol > ol = ol > 1L

We write 9, as v whenever there is no confusion and we also denote by T,,M = E$° @ E} the
splitting of Ty, M which translates to the splitting T, M = ES* @ E¥. Let X, = X}, —~ and let
ah > 0 such that fi(B(z,ah)) C B(f'x,az) for all x € M and i = 0,1, —1. Then define

A\ Y o
e u — e w
; ’
=min{ 1,a), | ————
T T (4a16(’“+1)7K>

Then we have for all z € Ag, for all y € B(x, ;) and for all v/, € ES ¢ Ty M (see [22] p.72
for further details) :

1
(5) (7p7= — (€ = D)ol < 1D (el < el

1 _ _ "
(6) (1o7m — (@ = D)ol 1Dy~ @)l < e

Define k(x) = min{k € N: x € Ay} for x € A*. Then the inequalities (5) and (6) hold for any
Y € B(2,7u(x)). Such sets B(x,v,(s)) are called Lyapunov neighborhoods. Letting 7' = a1y,
we have v, = ase """ < 1 for k large enough and some constant a3 independent of k. We use
d? to denote the distance induced by || - ||/ on B(x,as) and B (y,r) to denote the ball centered
at y with radius r in dJ).

For the purpose of our use in the computation of tail entropy and local volume growth, we
need to estimate the proximity of the dominated splitting in Lyapunov neighborhoods along
orbits. For a splitting F' = Fy @ F» of an Euclidean space F with norm || ||, and £ > 0, we denote
by Q) (F1,€) the cone of width £ of Fy in |||, i.e. the set {v =vi +vo € F': v1 € F1, v €
Fy, ||vz]] < &||vi||]}. For any vector subspace G of F we let «(G) be the Pliicker embedding of
G in the projective space P \ F' of the Euclidean power exterior algebra AF. When A : F — F’
is a linear map between two finite dimensional Euclidean spaces F' and F', we let \'A be the
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induced map on the l-exterior power \'F with [ less than or equal to the dimension of F. With
the above notations the map = — A'D, f is a-Holder and one may assume its Holder norm is
less than K by taking K larger in advance. Observe that A'F 3 u +— || \! Aul| induces a map on

P A! F by letting || \! A(Pu)| = IAAul - Also we let lu(f,z) be the dimension of E*(z). When

fll

€ Merg(f), Lu(f, 2) is a constant for p-a.e. z, which we denote by [, (f, ).

Lemma 1. For any £ > 0 small enough there exists ac > 0 such that for any x € A* and for
any y € B (w,ag'yl )> with 1 = 1, (f, z) we have :

K(z
(i) | Dyf)|% ) = X702 for all v € Qyu(EL,€) and | Dy f ()[4, < eV|[v]|2 for all
@) @)
v e Qyy(EL ),

(ii) Dy f(@Qy(Ex.€)) C Quy,,, (B, €) and Dy f~H(Quy (E5,6)) C Qi (Bf21,:6),

1"
f(@) f= (=)

L IA' Dy £ (O (o u
(iti) e < HAZDIf(L(E:))IfZE(:) <7 for all l-plane G C Qy» (B3, §).

Proof. Let € >0 and =z € A*.

|//
x

(i) By the domination property ES°@® EY at y with respect to || - ||/ given by the inequalities
(5) and (6), the first item holds for small ¢ independent of k(x).

(ii) Using the invariance of E* and the domination property at = there exists ¢ € (0,1)
independent of z satisfying D, f(Q~(E;,&)) C Q\I\I}’(w)(E}L(z)7§§)' Then for any y €
B(x,a¢7,(x)), we get by the Inequalities (4)

IDof = Duflz = max IDef(0) = Dy ()
< 4a16n(f(fr))v”[)mf —Dyf||
< 4Kale(”(m)+1)7(a§’)’n(z))a
< ag.

For small 7, by (5) and (6) one has also
1
———— < min [|D,f()||}, < max [|[D,f)||} < 2|Df|l-
It follows that for ||v||” = 1, the angle £ (D, f(v), D f(v)) with respect to ||- ||’f’(m) is less
than arctan(§) —arctan(c€) for a¢ small enough. We conclude that D, f (Q)~ (EY),€) C
Qi

erty for the center stable direction.

<E}L( ) {) for any y € B(x, agyi). We prove similarly the cone invariance prop-

(iii) To prove the last item observe first that using again the domination property at x we

1 1"
A D (Gl < 1—e /2 for all l-planes G C Q) (EY, €) for £ > 0 small

get ’IA‘Dmf(L(E;f))I}Qm) -1
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enough. As f is eMi-expanding in the unstable direction with respect to || - ||/ we have

I A D f (BN F 0y > €.

Then arguing as above for y € B(«, agvi(z)), we have by Lemma 2 in the Appendix and
the Inequalities (4) :

[N Daf = N'Dy 2y < (dare SN AL Dy f — \'Dy f|| < ag.

Therefore we get for a¢ small enough :

A Dy Uy | [N Dy FGDI = ITA Daf (U)o
IN Do f BNy |~ A" D f (BN o

| N Def @Dy
N DL FUEN )

[0}

< el,f;; +1—eT
<1l-—e 7.
0
From the domination structure E° @ E™ in the norm || - |/, one may build a family of fake

center-stable manifolds as follows.

Proposition 1. With the notations of Lemma 1, for any & > 0 small enough, there ezist
be € (0,a¢) and families {WS : x € A*} of C' manifolds satisfying
(i) uniform size: for v € Ay, k € N, there is a C' map ¢, : ES® — E¥ such that WS is
locally given by the graph Tdy := {(z,0(2)), z € E$*} of ¢, i.e.
We? = exp, (T'o,) N B(x, agyi);

(ii) almost tangency: T,yWVS® lies in a cone of width & of ES® in || - || for any y € WS*;

(iii) local invariance: fEWE (beVu(z)) C L () Wwith WE(C) being the ball of radius ¢ cen-
tered at x inside WE® with respect to the distance induced by || - |2} on WE.
Proof. By taking the exponential map at x we can assume without loss of generality that we are
working in RY. Let §~and ag¢ be as in Lemma 1. For any x € A*, we can extend f |B(m’a£%(w))
to a diffeomorphism f, : RY — RY such that

hd fx(y) =f(y) forye B(x7a§7ﬁ(m))§

o |Dyfe — Dof||" < 2ag  for y € RY.
By taking a¢ smaller, the properties of Lemma 1 hold with respect to fz for all y € RY. Let = be
the disjoint union given by Z =[] . ,.{z} x R? where A* is endowed with the discret topology.
Then f = (fz)zem can be viewed as a map from Z to itself by letting f(:r,v) = (f(:r), fz(v))

Note that the global splitting [], . {z} x RY = [[,cx- {2} x (B @ EY) is dominated with
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respect to f. By [16] §5, we can obtain a family {)¢* : 2 € A*} of global C' submanifolds in
RY which are C' graphs defined on E¢* such that we have for all z € A* :

“+oo
{o} x ¥ = (V77 ({7 @)) % Qe (B ©)
n=0

Vy S Rda Tyyaccs C QHH;’(E587£)

In particular we get f*({z} x V) c {f*(z)} x Vi (4 Since we have f {2} x B(z.ae7n(0)) =
f |B(z’b§%(z>), one concludes the proof by considering WS* = YV, N B(m,ag%(x)) and taking
much smaller be than ae.

O

3. TAIL ENTROPY AND LOCAL VOLUME GROWTH

Let f: M — M be a C" diffeomorphism with » > 1 on a compact Riemannian manifold
(M, ]|]])- In this section, we relate the Newhouse local entropy of an ergodic measure with the
local volume growth of smooth unstable discs. We begin with some definitions. A C" map o,
from the unit square [0, 1]* of R¥ to M, which is a diffeomorphism onto its image, is called a C"
k-disc. The C" size of ¢ is defined as

lollr = sup{[| D]l : ¢ <7 geRT}

where ||[D90|| denotes the (¢ — [¢])-Holder norm of Dl9g for ¢ ¢ N and the usual supremum
norm of the derivative D¢ of order ¢ for ¢ € N.

For any C! smooth k-disc o and for any y >0, 1>~ >0, C > 1 and n € N, we consider
the set ’H}L(G, X,7, C) of points of [0,1]* whose exponential growth of the induced map on the
k-exterior tangent bundle is almost equal to x:

H?(J,X,%C’) = {t € [0, 1]k V1< j<n—1, O lex=)i < )\k D, (fj oa) | < Ce(X”)j},

For I' C [0, 1]%, we also denote by |o|r| the k-volume of o on T, i.e. |oyr| = [ | \¥ Dyo|| dA(2),
where d) is the Lebesgue measure on [0,1]¥. Then given x >0, 1> ~v>0,C > 1,2 € M,
n € N and € > 0, we define the local volume growth of o at = with respect to these parameters
as follows :

V:cn’e (U|X7 s O) = |(fn71 © U)\An

with A, == H} (o, x,7,C) N o B, (z,¢, f).

Proposition 2. Let v € Me,4(f) with I = 1,(f,v) > 1. Then for anye >0, 1 > n > 0 and
v > 0, there exist a Borel set F,, with v(F;) > n and a constant C > 1, such that for all § > 0,
all n large enough and all x € F;, :

s(n,0, Bp(z,e, f)NF,)) <™  sup V"2 <g
wil iz

Z_Ai@Mc) .
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In fact the [,-discs can be chosen to be affine through the exponential map (see the proof of
Proposotion 2 below). Let v} (f,e) denote the local volume growth of k-disks :

N . 1 _
vi(f,e) =limsup— sup  sup  log|(f" "0 0) -1, (we |-
n TN xeM o k-disk
with [o|[, <1

S. Newhouse [19, 20] proved that the Newhouse local entropy h*(f, v, €) of an ergodic measure
is less than or equal to the local volume growth of center-unstable dimension. As a direct
consequence of Proposition 2, we improve this estimate by considering the local volume growth
of unstable dimension.

Corollary 1. With the above notations,
Ve >0 Vv € Merg(f), R*(f,v.e) S (5., ([ 2¢).

Such an inequality was established by K. Cogswell in [11] between the Kolmogorov-Sinai
entropy and the global volume growth of unstable discs (in particular Cogswell’s main result
implies Corollary 1 for € larger than the diameter of M).

Remark 1. For any v € Mey4(f), let us denote by l.,(f,v) the number of nonnegative Lya-
punov exponents of v. The following estimate is shown in [20] :

. 1 -
Ve >0 Vv € Merg(f), h*(fiv,e) < sup  limsup — sup log[(f"~" 0 0)jo-15, (s,2,5) | -
‘ o lew (f,v)-disk n N zeM 3
with o<1

Observe the right-hand side term differs from the local volume growth Ul*w(f V)(f, 2¢) as we invert

the supremum in o with the limsup in n. We do not know if the above inequality still holds true
for 1, in place of lg,.

We prove now Proposition 2 which is the key new tool to prove the existence of symbolic
extensions in dimension 3 combined with the approach developed in [6].

Proof of Proposition 2. Consider v € Me,q(f) with I = [,(f,v) > 1. Let 0 < v < Ay =
Ai(f,v) in the nonuniformly hyperbolic estimates of Section 2. Fix n € (0,1) and k € N
with v(Ag(Aw,v)) > 1. There is a subset F,, of Ay = Ag(Ay,7y) with v(F,) > n such that
LAl Dy(f"|gx)ll is converging uniformly in y € F, to >, M (f,y) =X, A (f, v) when n goes
to +o00. Let € € (0,1) and €, < € to be precised. For any given & € F;, 0 < 0 < ¢, let E,
be a maximal (n, §)-separated set in d for f in B, (&,¢, f) N F,. There exists x € E,, such that
E! = E, N B(x,¢y,) satisfies £, > A; (%’“)d #E, for some universal constant A;.

(i) Distance estimates in local charts

Since we only deal with the local dynamics around the orbit of x, we can assume without
loss of generality that we are working in RY by taking the exponential map at . Take 0 < &}, <
(a1eF7)~1 so small that B(x,ex) C BY(x,2a1e¥7e;) C B(z,¢) and consider

WE = (x + ES®) N B (x,2a,e"ey,).
For 0,, = Bke_"(‘“f“‘”/) with Br = Br(d) to be precised we let A be a 6,-net of Wf for d’

satisfying §.4° < Ao, 4 E” = A,0,, =D for some universal constant Ay. This means that
any point of WS* is within a distance 6,, of A for d]. For any z € A°®, denote

L ={z+v: || <4a,e"ey, v € B}
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For y € B!(x,2a1e"¢ey) we let y = yes + yu With yes € o + ES° and y, € E*. Observe
that ES° and EY are orthogonal in <, >", thus y.s lies in WS* and there exists z, € A with
lYes — 2yl < On. Therefore, when y also lies in Ay, we get :

1Yes — ZyH” < 2‘116“”908 - Zy”
< 4alekv||ycs - Zy”;/

< 4a "6,

For small € € (0, %), let b¢ > 0 be as in Lemma 1 and Proposition 1. Since the distributions
E*“* and E" are continuous on A, we may choose ¢ and Sy so small that for any y € E/:

o the set ([yes, 2y] + E%)NWS* defines a graph T'y, of a C' function ¢y : [yes, 2,] C E5® —

EY,

o FSM Qi (E;S/u, ﬁ) C Qi (E;S/u,§>, these cones being defined with respect
to the splitting Ei° & Ey.

I, Czy+ Ey

3ty Wy°

e
x

FIGURE 1. The transverse intersection at ¢, of I,, and W;* for y € El.

Let 0, : [0,1] — EZ® + E¥ be the reparametrization of the graph of ¢, given by

vt € [0,1], 0y(t) = yes + t(2y — Yes) + P(Yes +t(2y — Yes)-

Note that 60, (0) = y and 6,(1) is the intersection point of I, and W;*. To simplify the notations
we let t, := 0,(1). It follows from the almost tangency property of center-stable fake manifolds
stated in Proposition 1 (ii) that

(7) 0'(t) € Qqy (B}, €)-
Moreover we have
(8) zy —Yes € BT CQyy (B, €),
9) Dy.ott(zy—ye) 2y —Yes) € By CQyu(Ey, ).
From the above properties (7), (8), (9) and £ < %, one deduces after an easy computation

that [|6(¢)[ly < 3[lzy — yeslly for all ¢ € [0,1]. For w € A* let dj),.. be the distance induced
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respectively by ||||2, on WS, We have

b (nt) < | 10

)

< 3[|Yes — 2y||Z
< 12a,€*70,,.

(i) Dynamical estimates along YW

By the local invariance of center-stable manifolds stated in Proposition 1 (iii) we get for all
0<j<n:

s J J < o
wes (@), F(t) < IDf lowss,
and then by Lemma 1 (i),
wer, (PP (8) < Py | () 7 ()
After an immediate induction we obtain for all 0 < j < n:

e (P (1) < i (wty),

EEAC))

||¥j_1(y) wes (fjfl(y)vfjfl(ty)),

FI=1w)

and therefore

Wee (F ), F (1) < 120170,
£3 (y)
< 12aeMBre ™ (v =7/a),
% i (). f ky Dk .
wes (f (y)af (ty)) < 12@16 Vﬁ(fi(y))v
3 (y) Vie(y)
where £(p) and v, for p € UpenAy are defined as in Page 5. As y belongs to E], C Ay we
have k(y) < k. Therefore we get for g < 48;'% :
VO<j<n d(f (). f1(y) < 2dpe  (F (), (L))

I (y)

be
S SR W)

o 5 .
and we have similarly for S < 5% -

VO <j<mn, d(f(ty), [ (y) < /4,

ie. t, € By(y,0/4, f).
For y € E/, we let now

O (B“ L (P ( )Ze%)ﬂe

C  By(ty,6/4,f)
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C  Bu(y,9/2,f).
As Ej, is (n,d)-separated, the sets (Wy(ty)),cp, are pairwise disjoint.

(iii) Dynamical estimates along E*

For ¢ small enough (depending only on k), for any j = 0, - -+ ,n—1, the ball B}’j(y) (fj(ty)’ %e*ljw)

is contained in B (fj(y),bgyi(fj(y))>, since d(f7(ty), f7(y)) < %’yf{(ﬂ(y)). Let (e) be an or-
thonormal basis of E¥ with respect to || - ||/. We consider the affine reparametrization of
I, z € A%, given by o, : [0,1]" — M, (t;); — 2z + > ,(t; — 1/2)da1e"eiel. Noting that
EY € Qqy(Ey,§), by Lemma 1 (ii), for any 7 € o'W, (t,) and for any 0 < j < n, the vector

space DJZ(T)fj (EY) lies in Q””/f/j(y) (E}‘j(y),g). Then by Lemma 1 (iii) we get

n—1
. 1 n . 1
lim sup -~ log || A! Do ()" |Ex ||Z = limsup n Z log || A ijOO'z(T)f‘Do'z(T)fj(E:)H/f/‘j(y)
n n =0
n—1
< limsu lZlo I AN Dpiopy Flze s +
- n pn : S i) Efj(y) fi(y) v
7=0
. 1 n
= limsup —log | \' D, f By y
n N
Noting that f"(y) € Aktn, we have by the Inequalities (4)
[[o] n
Y0 € Tpno. (M, 5= < [[0llfngy) < 200eE47 o]

Then it follows from Lemma 2 in the Appendix that
. 1 1 n . 1 l n
lim sup - log|| \' D+ (f" o 0,)| = limsup - log | \' Dy_(r) f"|Ex|
. 1
< lim sup - log || Al DGZ(T)f"|E:HZ + Iy
n
. 1 n
< limsup —log|| \' (Dyf"[my)lly + (L + 1)y
: 1 l n
< limsup —log | A" (Dy f* |y )l + (20 + 1)y
=3 A (fv)+ @+ 1)y

Similarly we also get :

s 1 l n +
- > E , — )
hII;IIlf - log|| \" D-(f"o0a,)| > : A (f,v)— 20+ 1)y
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Moreover the above limsup and liminf are uniform in y € E}, and 7 € o, 'W,,(t,). Therefore
for some C' > 1 we have for n large enough,

o \Wa(t,) (UZ,Z)\+ fov) 21+2)7,c>.

By using Lemma 1 and classical arguments of graph transform, the set f7 (W, (t,)) for 0 < j <

n — 1 defines a graph of a function from B”j(y) (fj (ty), %e*l v )) NnEY, | to E]i?(y). Therefore

the [-volume of f"~1(W,(t,)) with respect to || - -1, satisfies

fiy)

—12(n—1)~"
(10) |fn 1( |fn 1(y) > Cl5l€ P 1)“/,
for some universal constant ¢;. By applylng again Lemma 2 in the Appendix we obtain :
(11) [T W) = (are® I T W )|y

where |f"~1(W,(t,))| denotes the l-volume of f"~'(W,(t,)) with respect to the Riemannian
norm || - || on M. For z € A°® we let

I.:={yeE,, z ==}

and
AZ =N <UZ,ZA+ fiv), (21 —1—2)%0) No;'By(z, 2, f).
As the sets W, (t,), y € E/, are pairwise disjoint, we have :

(12) (" oo)az| = D0 Walty)]

yel',

By combining the inequalities (10), (11), (12) we obtain

"

> (4aetn—br)— PRI
"=y

[(f" "t oa2)a;

(t
yel',

> Cl(sle—lz(n—l)'y’(4a1€(k+n—1)'y)—l . ﬁrz
With the notations introduced at the beginning of Section 3, we have therefore for some constant

D independent of n and & € F,

#Fz < Den(lAhLlQV')Va:l’ZE (Uz

ZAj(f,u),(QlJrQ)v,C) .

Now we are in a position to complete the proof of Proposition 2.
By letting F,, 5 := {0., z € A®}, we get for all & € Aj and some constants, all denoted by
D and independent of n and & € Fj, :

5(n,6,Bn(,¢,f)) = #En

IN

D{E;,

D ) .

z€Aes

IN
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IN

De” n(ly+12' )ﬁACS sup Vn ,2e (Uz

o€Fn,s

DA 2+ 2), C)

< D= (Ar+y )+ +12y") sup V= (o,
o€Fn,s

S A (fv), (2z+2)%c>.

i

This concludes the proof of the Proposition 2 as v and thus 4/ = a~'v may be chosen arbitrarily
small. g

4. PROOF OF MAIN THEOREM

By Proposition 2 Newhouse local entropy of an ergodic measure with one positive Lyapunov
exponent is bounded from above by the local volume growth of curves. This volume growth
may be controled by using the Reparametrization Lemma of [6]. Following straightforwardly
the proof of the Main Proposition in [6] we get :

Proposition 3. Let f be a C" diffeomorphism with r > 1 on a Riemannian manifold M and
p € Miny(f). For all v > 0, there exist my,, k, € N* such that for v € Mepq(f) close enough
to p with L,(f,v) =1, we have

/\T(fau)_)‘?_(f’y)
r—1

N
hmi?}ku(fﬂj) < +7
From the criterion in Theorem 1, for proving the Main Theorem, we need to consider all
ergodic measures with any possible [,. Actually, the Main Theorem is obtained from the
following Proposition by applying Theorem 1 with the upper semicontinuous affine function

E:= ﬁ Zi:l,Q AC(f )

Proposition 4. Let f be a C" diffeomorphism with r > 1 on a 3-dimensional Riemannian
manifold M and 1 € Mipn,(f). For ally > 0, there exist an entropy structure (hi), and k, € N
such that for v € Me,4(f) close enough to u, we have

Zz 1,2 (fv ) Zz 1,2 (f7 )
r—1 7

hk“(f,V) <

In other terms, E := 15>, 12 MF(f,-) satisfies Inequaliy (1) for a 3-dimensional C" diffeo-
morphism f with r > 1.

Proof of Proposition j. Fix i € M, (f). By the upper semicontinuity of >, _, , M (f, ), lower
semicontinuity of A3(f,-) and continuity of the integral of logarithm for J acoblan When v is close
enough to p, one has

(13) DORSEIATED DERTAT NS
i=1,2 i=1,2

(14) Na(fop) = dalfv) < 3

(15) |/logJac(f)de/logJac(f)d,u| < (r—1)y
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Hence, if h, (f) < /2, from hYS(f,v) < h,(f) for any m, k, by (13) we get

* -y +
(16) WNew (f,0) < 2o N (s Mi - 12121,2 A (fv) L

Next we assume h, (f) > /2. By Ruelle inequality [23], it holds that min (,(f,v),l.(f~,v)) =
1. Applying Proposition 3 to f*, there exist mf, kff € N such that for any v € Mc4(f) close
enough to p with I, (f*,v) =1,

M) =M ()
r—1

i, (fv) =1, then },_,, A (f,v) = A] (f,v), thus by the above inequality, (16) holds with

respect to mf,kf. If 1,(f71v) = 1, then \3(f,v) < —h,(f~") = —h,(f) < —v/2, which

implies A3(f, ) < 0 by (14). Thus,

)‘ir(f_lvﬂ) - Af(f_l,y)

hNew (fi )

m“,“

+ 7.

Az (fsv) = A5 (fim)
- )\S(fay)_)‘3(f7ﬂ)'
Noting that [log Jac(f)dr = Y iz123Ni(f,7) for any T € My, (f), by (15) we finally get

N0 =N G = Y A= 3 M)+ [ logdacfydv — [ logJac(s) du

i=1,2 i=1,2
< D ONEW - DN+ - 1)y
i=1,2 i=1,2

and therefore
o N (o) = S o N (S
(17) New (f 1 ) 21_1,2 i (f :uj — 1221_1,2 i (f V) +

By Lemma 2 in | }, the sequence (hg)i = (min(hNew (f,"), hleiwk(ffl))) defines an entropy

structure. Combining (16) for I, (f,v) =1 and (17) for l.(f~1,v) = 1, we conclude the proof of
Proposition 4 and thus also of the Main Theorem by considering the entropy structure (hy)r. O

Remark 2. For a local diffeomorphism f: M — M, the following local Ruelle inequlity holds
[7][10] : there exists a scale € > 0 such that h*(f, p,e) < min (Z] )\j(f, w)s =225 A (f, u)) for

any 1 € Miny(f). In particular in dimension 3, any invariant measure with positive Newhouse
local entropy admits at least one positive and one negative Lyapunov exponent. As the proofs
of Main Theorem and Proposition 2 are just local they apply verbatim in the context of a local
3-dimensional diffeomorphism.

APPENDIX A.

Let E and F' be two finite dimensional vector spaces of dimension k. We endow E (resp. F')
with two Euclidean norms || - ||g and || - ||z (resp. || - |7 and || - ||’=). We consider the associated
Euclidean structures on A\*E (resp. \*F). Let A: E — F be an invertible linear map and \*A
the induced map on the k-exterior powers. We denote by || \¥ A| and || A¥ A|" the associated
subordinated norms.
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Lemma 2. With the above notations, assume that we have for some constants Cg,Cr > 1 and
Dg,Dp <1:
Ve E, Dglv|e <l < Cellvle,
Vwe F, Dpllwllr < |wlF < Crllwlr,
then
(Dr/Cr)* A" All < | AF A" < (Cr/Dp)*|| A* Al
F/Ce)"| A <A < (Cr/Dg)"|\ .
Proof. By the singular value decomposition there exists an orthonormal family (e;);=1,... x of
(E, ||| ) such that (Ae;); is an orthogonal family in (F, ||-||r) with | \¥ A|| = || Ae1 - - -AAei||r =
Hle ||Ae;||p. Similarly we let (€});=1,... x be the corresponding orthonormal family for the
norms ||-||% and || - ||’=- Let P be the change of basis matrix from (e}); to (e;);. Then the norms

ller A+ Aeglls and |l€f A--- A€}||g are just given by the absolute values of the determinants
of P and P! respectively. Therefore we have

[det(P)] < [llellls

< DG,
and
lex Ao Newlly = [det(P)]
= 1/]det(P7Y)|
> Dk,

We conclude that
|Aer A -+ A Aeg||w
ler A=+ Aekllg

D" [TIlAeill

I A" Al

IN

IA

< D*CE]T I 4eillr

< (Cp/Dp)*|| \* Al

The other inequality is obtained symmetrically.

REFERENCES

[1] M. Asaoka, Hyperboic sets exhibiting C'1-persistent homoclonic tangency for higher dimensions, Proc. Amer.
Math. Soc., 136, 677-686, 2008. 1

[2] L. Barreira and Y. Pesin, Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents,
Cambridge Press, 2007. 4

[3] M. Boyle and T. Downarowicz, The entropy theory of symbolic extensions, Invent. Math., 156, 119-161,
2004. 1, 2

[4] M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math.,
14, , 713-757, 2002. 1



SYMBOLIC EXTENSIONS FOR 3-DIMENSIONAL DIFFEOMORPHISMS 17

[5] D. Burguet, C? surface diffeomorphisms have symbolic extensions, Invent. Math., 186, 191-236, 2011. 1
[6] D. Burguet, Symbolic extensions in intermediate smoothness on surfaces, Ann. Sci. Ec. Norm. Supér., 2,
337-362, 2012. 1, 2, 3, 9, 14, 15
[7] D. Burguet and T. Fisher, Symbolic extensions for partially hyperbolic dynamical systems with 2-
dimensional center bundle, Discrete Contin. Dyn. Syst., 33, 2253-2270, 2013. 15
[8] J. Buzzi, Intrinsic ergodicity for smooth interval maps, Israel J. Math., 100, 125-161, 1997. 1
[9] J. Buzzi, S. Crovisier and T. Fisher, The entropy of C!-diffeomorphisms without a dominated splitting,
Trans. Amer. Math. Soc., 370, 6685-6734, 2018. 1
[10] Y. Cao, G. Liao and Z. You, Upper bounds on measure theoretic tail entropy for dominated splittings,
Ergodic Theory Dynam. Systems., https://doi.org/10.1017/etds.2019.10 15
[11] K. Cogswell, Entropy and volume growth, Ergodic Theory Dynam. Systems., 20,. 77-84, 2000. 9
[12] W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynam. Systems., 25,
1115-1138, 2005. 1
[13] T. Downarowicz, Entropy structure, J. Anal. Math., 96, 57-116, 2005. 2, 3
[14] T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions, Invent. Math., 176, 617-
636, 2009. 1, 2
[15] T. Downarowicz and S. Newhouse, Symbolic extension entropy in smooth dynamics, Invent. Math., 160,
453-499, 2005. 1
[16] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, volume 583 of Lect. Notes in Math., Springer Verlag,
1977. 8
[17] G. Liao, M. Viana and J. Yang, The entropy conjecture for diffeomorphisms away from tangencies, J. Fur.
Math. Soc., 15, 2043-2060, 2013. 1
[18] L. Diaz, T. Fisher, M. J. Pacifico and J. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomor-
phisms, Discrete Con. Dyn. Syst., 32, 4195-4207, 2012. 1
| S. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems., 8%, 283-299, 1988. 9
| S. Newhouse, Continuity properties of entropy, Ann. Math., 129, 215-235, 1989. 2, 9
[21] V. I. Oseledets, A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19, 197-231, 1968. 3
] M. Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, Cambridge Univ. Press,
Cambridge, 1993. 4, 5
[23] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., 9, 83-88, 1978. 15
[24] Y. Yomdin, Volume growth and entropy, Israel J. Math., 57, 285-300, 1987. 1

Email address: david.burguet@upmc.fr
Email address: 1g@suda.edu.cn



	1. Introduction
	2. Preliminaries
	2.1.  Newhouse entropy structure and the Symbolic Extension Theorem.
	2.2. Lyapunov exponents
	2.3. Nonuniformly hyperbolic estimates

	3. Tail entropy and local volume growth
	4. Proof of Main Theorem 
	Appendix A. 
	References

