What Data are needed for Semantic Segmentation in Earth Observation? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

What Data are needed for Semantic Segmentation in Earth Observation?

Résumé

This paper explores different aspects of semantic segmentation of remote sensing data using deep neural networks. Learning with deep neural networks was revolutionized by the creation of ImageNet, a massive, annotated image dataset. Remote sensing benefited of these new techniques, however Earth Observation datasets remain small in comparison. In this work, we investigate how we can progress towards the ImageNet of remote sensing. In particular, two questions are addressed in this paper. First, how robust are existing supervised learning strategies with respect to data? Second, is it possible-and with what benefits?-to create a dataset equivalent to ImageNet for remote sensing? The main contributions of this work are: (i) a strong robustness analysis of existing supervised learning strategies with respect to remote sensing data, (ii) the introduction of a new dataset-the MiniFrance dataset-as a first step towards the ImageNet of remote sensing.
Fichier principal
Vignette du fichier
jurse2019javiera.pdf (4.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02343915 , version 1 (14-11-2019)
hal-02343915 , version 2 (10-12-2019)

Identifiants

Citer

Javiera Castillo-Navarro, Nicolas Audebert, Alexandre Boulch, Bertrand Le Saux, Sébastien Lefèvre. What Data are needed for Semantic Segmentation in Earth Observation?. 2019 Joint Urban Remote Sensing Event (JURSE), May 2019, Vannes, France. pp.1-4, ⟨10.1109/JURSE.2019.8809071⟩. ⟨hal-02343915v1⟩
243 Consultations
296 Téléchargements

Altmetric

Partager

More