
HAL Id: hal-02343915
https://hal.science/hal-02343915v1

Submitted on 14 Nov 2019 (v1), last revised 10 Dec 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What Data are needed for Semantic Segmentation in
Earth Observation?

Javiera Castillo-Navarro, Nicolas Audebert, Alexandre Boulch, Bertrand Le
Saux, Sébastien Lefèvre

To cite this version:
Javiera Castillo-Navarro, Nicolas Audebert, Alexandre Boulch, Bertrand Le Saux, Sébastien Lefèvre.
What Data are needed for Semantic Segmentation in Earth Observation?. 2019 Joint Urban Remote
Sensing Event (JURSE), May 2019, Vannes, France. pp.1-4, �10.1109/JURSE.2019.8809071�. �hal-
02343915v1�

https://hal.science/hal-02343915v1
https://hal.archives-ouvertes.fr


What Data are needed
for Deep Learning in Earth Observation?

J. Castillo-Navarro, N. Audebert, A. Boulch, B. Le Saux
DTIS, ONERA, University Paris Saclay

F-91123 Palaiseau - France.
javiera.castillo-navarro@onera.fr, bertrand.le saux@onera.fr

S. Lefèvre
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Abstract—This paper explores different aspects of semantic
segmentation of remote sensing data using deep neural networks.
Learning with deep neural networks was revolutionized by
the creation of ImageNet, a massive, annotated image dataset.
Remote sensing benefited of these new techniques, however Earth
Observation datasets remain small in comparison. In this work,
we investigate how we can progress towards the ImageNet of
remote sensing. In particular, two questions are addressed in
this paper. First, how robust are existing supervised learning
strategies with respect to data? Second, is it possible – and
with what benefits? – to create a dataset equivalent to ImageNet
for remote sensing? The main contributions of this work are:
(i) a strong robustness analysis of existing supervised learning
strategies with respect to remote sensing data, (ii) the introduction
of a new dataset – the MiniFrance dataset – as a first step towards
the ImageNet of remote sensing.

Index Terms—Deep Learning, Supervised Learning, Semantic
Segmentation, Land Use/Land Cover Mapping.

I. INTRODUCTION

The ever-growing amount of remote sensing imagery data
in the last two decades has allowed new developments in the
fields of ecology, urban planning or natural disaster response.
Those data are also more easily available, even openly as in the
Copernicus program of the European Space Agency (Sentinel
satellites). However, data exploitation still remains a bottle-
neck. It requires human interprets, for example to identify tree
species and study deforestation in a local ecosystem, or to find
new buildings and measure growth of urban areas.

Thanks to the new deep learning methods developed for pro-
cessing multimedia images in recent years, it is now possible to
automate most of these tasks for Earth Observation (EO) data.
Indeed, many state-of-the-art algorithms for object detection
and image segmentation or classification [2], [12] have been
successfully transferred to aerial and satellite images. It allows
to produce quickly and without human intervention precise
semantic maps, in both urban and rural contexts.

However, these learning algorithms rely heavily on the
availability of annotated image databases. Even if collaborative
cartographic resources such as OpenStreetMap can be used as
annotations [8], these are restricted in terms of semantics (only
roads, buildings, etc.). Thus, the question of quantifying the
influence of existing datasets on the models we learn arises.
Mmoreover, we need to define what it requires to make a good
dataset for training EO data classification algorithms.

Thus, the contributions of this paper are twofold: (i) An
experimental analysis of the amount of data necessary to
successfully achieve supervised learning, and moreover, of the
required data variability; (ii) The constitution of a large-scale
dataset of various remote sensing images and annotations from
different sources, which overcomes limitations of standard
reference datasets.

The rest of the paper is organized as follows. First we
explain the problem statement and explore some related work
in Sec. II. We then discuss the robustness of supervised
learning in two cases: on current, small-scale datasets in
Sec. III and at large-scale in Sec. IV. Finally, we conclude
and draw perspectives in Sec. V.

II. PROBLEM STATEMENT AND RELATED WORK

Convolutional Neural Networks (CNNs) have greatly ben-
efited to computer vision and remote sensing for different
tasks including image segmentation such as land use and
land cover mapping. Furthermore, the pixel-wise predictions of
Fully Convolutional Networks (FCN) and derivatives offer an
appealing approach for Earth Observation data analysis. These
models have reached the state-of-the-art for remote sensing
data analysis including: land cover mapping in urban areas
[9], [11], object segmentation [1] or semantic segmentation
for multi-modal and multi-scale remote sensing data [2].

Deep networks achieve top results on most of the public
benchmark EO datasets [4], [8], [10], [13], with excellent

Fig. 1: Influence of the training set size (number of tiles) on the
network performances, with and without weight initialization.
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Fig. 2: Visualization of results of the different training phases over the Vaihingen dataset.

performances over 80 to 90% accuracy. However, these meth-
ods are supervised, and still require a large amount of dense
pixel-wise annotated data during the training phase. Most of
the time, there exists only a small number of annotations on
which to train models. In this context, we aim to answer
the following question: how much data are needed to train a
supervised neural network for semantic segmentation in Earth
Observation?

This problem can be tackled in two ways: a first category
trains models with large, incomplete ground truth [7] and a
second one is to focus on a small amount of well annotated
data. In this paper, we consider the second option. In addition,
applying a model trained on one dataset to another one yields
in a serious drop of accuracy. This is known as the domain
adaptation problem [15], and leads us to wonder what are the
desired properties of a good training dataset.

To this aim, we set up several experiments to investigate the
behaviour of network training with respect to the data. First,
we aim at quantifying the amount of data required to obtain
good performances in a standard set-up. Second, we renew the
experiment with a more large-scale dataset to understand the
relationship between training and genericity of the resulting
models. In all experiments, we use as a baseline an efficient
and versatile FCN: SegNet [2], [3]. It presents an encoder-
decoder architecture, its encoder part is similar to VGG16 [14]
and thus can be initialized with pre-trained weights. Training
is achieved with Stochastic Gradient Descent and the standard
cross-entropy loss function weighted over pixels.

III. ANALYSIS OF SUPERVISED LEARNING ON
SMALL-SCALE DATASETS

The ISPRS 2D Semantic Labeling [13] Vaihingen dataset
consists of 33 infrared-red-green tiles with a spatial resolution
of 9cm/px and an average size of 2000 × 1500px. Dense
annotations are available on 16 tiles for 6 classes of interest:
impervious surfaces, buildings, low vegetation, trees, cars
and clutter. The associated benchmark being now closed, we
perform experiments using 12 annotated tiles for training
(train) and 4 tiles for validation (denoted by val).

In our first experiment, we aim to test the sensitivity of
supervised learning to training. So we reduce the amount of

annotated images used for training, from 12 tiles to only one,
while val remains unchanged. Additionally, two different train-
ing settings are compared on the course of this experiment.
First, we train our network by initializing the encoder with
the pre-trained weights from VGG-16 on ImageNet. Secondly,
we repeat the experiment, but weights are randomly initialized
using the policy from [6]. This allows us to study if we can
benefit from transfer learning. Results are presented in Fig. 1.

The outcomes of this experiment are somehow unexpected,
since we supposed that reducing the number of training
tiles would seriously impact the performance of the network.
However, going from 90% of overall accuracy (training on 12
tiles) to 80% taking 1/12 of the initial training set (training on
1 tile) does not seem that unsatisfactory. One possible reason
is that all the images in the Vaihingen dataset are alike, thus, to
generalize on them is a relatively easy task. On the other hand,
the mean IoU decreases faster than the accuracy showing that
one must be careful when interpreting these scores.

To better understand the quantitative scores from Fig. 1
in terms of segmentation quality, Fig. 2 shows the different
predictions obtained for tile 30. We can observe that the
quality of the segmentation map decreases notably when
less annotated tiles are used during the training phase. It is
interesting to note that there is not a considerable difference
between training with 10 tiles and with 6 tiles, however there is
a greater difference when training with 1 tile: borders are less
smooth and little objects (such as cars) are not well learned,
which explains why the mean IoU decreases faster on Fig. 1.

To assess the idea that the Vaihingen dataset has much
redundancy, we observed its statistical distribution. In Fig. 4(a)
and (b), we compare the color histograms over the 3 channels
for train and val. Indeed, they are almost identical, which
indicates that learning on a single location might not be
so challenging. Actually, this is even promising in terms of
practical business applications, since mapping an area can be
achieved after labeling only a few images.

IV. SUPERVISED LEARNING AT LARGE-SCALE

The previous section stressed out a limitation of standard
datasets for semantic mapping. If some already take into
account multiple locations, they are devoted to a single class



Fig. 3: MiniFrance dataset overview.

(such as buildings [8], [10]) or to land cover classes [15],
but do not offer generic land use classes. Consequently, we
introduce the MiniFrance dataset with the purpose of adding
variety to the existing datasets for semantic segmentation.

MiniFrance consists of aerial images of 16 cities or conur-
bations from different regions in France (see Fig. 3). It is built
using the 2 following data sources:

• Orthophotos from the BD ORTHO® free access database
from the IGN (French National Mapping Agency) 1.
Each tile size is 10, 000× 10, 000 pixels and the ground
sampling distance of these images is 50cm/px.

• Labelled ground truth obtained from the Copernicus Ur-
ban Atlas 2012 database2. In this paper we focus on the
second level of the semantic hierarchy, and 15 land use
classes are considered, including urban fabric, industrial
and transport units, arable lands, pastures, forests, open
spaces, waterlands, and water.

We also propose a fixed partition for coherency of compar-
isons: 8 cities are used for training and the remaining 8
ones for test, keeping diversity in terms of architecture and
urban design in both subsets. All in all, it is constituted
of 2121 images, each of them of size 10, 000 × 10, 000
pixels. Therefore, MiniFrance dataset is 2719 times larger than
Vaihingen.

Similarly to Sec. III, we first test the influence of the
amount of training data over the classification. However, due to
computational times 3, we conduct more focused experiments.
We train with the whole dataset, then only consider 10%
of images on the dataset (we make sure to pick 10% of
images from each conurbation to conserve the diversity of
the dataset), and finally use only one city for training (the
seaside town of Caen, which represents a similar amount of
data: 12.5%). Test set remains the same. Following results of
previous experiments (see Fig. 1), weights are initialized as
the pre-trained weights for the VGG-16 network.

1http://professionnels.ign.fr/bdortho
2https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012/view
3Using a Titan X GPU, training over MiniFrance takes 40 hours, while

testing takes 25 hours

TABLE I: Classification performances with respect to amount
of data.

Train set OA mIoU
100 % 52.40 15.79
10 % 50.14 15.25

Caen only (∼ 12.5%) 42.09 10.05

Hence, results are shown in Table I 4. Performances are not
reaching the same level than on Vaihingen, which could be
expected since working with this dataset is still at early stages
and the land use classes are more abstract and difficult than
land cover ones. However, considering our current issue, it
is worth noting that training with all and 10% data leads to
similar scores, both in accuracy and IoU. By picking our 10%
sample images all over the dataset, we preserved the diversity
of the training set and did not degrade the results too much
(even if more data is better). On the contrary, training with a
single location implies a 10% loss in accuracy and 5% less of
mIoU. Clearly, the training dataset does not then offer enough
variety to encompass all the potential images of the test set.

In a second experiment, we apply the model trained on
the whole dataset to each city or conurbation of the test set.
Results are shown in Table II. It is interesting to observe that
the performance of the network varies notably between some
conurbations, revealing differences between cities and a lack of
generalization capacity from the model. Indeed, we observe in
Fig. 4 that the statistical distribution of the pixel colors differs
from train to test. Thus MiniFrance is a much more diverse
dataset than many others, and offers exciting challenges to
overcome.

(a) Vaihingen train set (b) Vaihingen val. set

(c) MiniFrance train set (d) MiniFrance test set

Fig. 4: Per channel color histograms over the Vaihingen and
the MiniFrance datasets, comparing train and validation/test
subsets.

To better understand these numbers, Fig. 5 presents seman-
tic maps obtained during testing. The first column shows a
quite accurate prediction. Indeed, the model correctly identifies

4On this table and for the rest of the document, OA stands for Overall
Accuracy and mIoU is Mean IoU.



TABLE II: Results by conurbation, trained over the entire train
set.

Score Marseille Rennes Angers Quimper Vannes Clermont Lille Cherbourg
OA 46.13 51.56 44.85 50.82 49.51 46.51 61.35 67.54

mIoU 12.77 15.05 13.15 13.93 12.66 11.40 16.93 15.82

Fig. 5: MiniFrance semantic segmentation results. From top to
bottom: RGB image, ground truth and prediction. Legend of
main classes: Urban fabric , Industrial, commercial, public,
military, private and transport units , Complex and mixed
cultivation patterns , Herbaceous vegetation associations .

most classes present on the image. However, the predicted map
appears more fragmented than the ground-truth, which shows
that the network is sensitive to color variations of the image,
and sometimes misses some abstract semantic classes. In the
second column, we can observe an image where ground-truth
is not reliable and for which the prediction obtained by our
method seems actually more accurate.

V. ANALYSIS AND CONCLUSION

Experiments in sections III and IV aimed at shedding some
light on the relationship between data and semantic seg-
mentation networks. On small-scale, single-location datasets
such as Vaihingen, these networks are robust to a drastic
decrease of the amount of training data when testing on
similar data. This is promising as practical applications can
be solved with less labeled data than what is usually thought,
but meanwhile is limited because models are likely to overfit.
Going large-scale raises new issues. Indeed, images are more
diverse, corresponding to various geographical idiosyncrasies

and various acquisition conditions and times. Also, large-scale
annotations are often approximate, due to crowd-sourcing or
semi-automated processes. Additionally, a new challenge is
the higher semantic level of the classes with respect to pre-
existing datasets which focus on structural classes (building,
roads, etc.). Indeed, in crowdsourced maps such as OSM,
classes are more symbolic and the classes are more land use
oriented, related to the parcel and based on the interpretation
of structural classes (e.g. building density in an area).

To promote research on large-scale EO analysis, we con-
stituted MiniFrance, a new dataset for urban semantic seg-
mentation. By using different cities for training and testing,
we augment the variety of the dataset, which will require
learning algorithms with good generalization capacities and
the right bias/variance compromise [5]. MiniFrance raises new
challenges including predicting high level semantics classes
from approximate ground truth or structured learning. In
addition, in this paper we also proposed a first FCN baseline
for further experimental comparison.
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