Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data - Archive ouverte HAL
Chapitre D'ouvrage Année : 2019

Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data

Résumé

This paper deals with morphological characterization of un-structured 3D point clouds issued from LiDAR data. A large majority of studies first rasterize 3D point clouds onto regular 2D grids and then use standard 2D image processing tools for characterizing data. In this paper, we suggest instead to keep the 3D structure as long as possible in the process. To this end, as raw LiDAR point clouds are unstructured, we first propose some voxelization strategies and then extract some morphological features on voxel data. The results obtained with attribute filtering show the ability of this process to efficiently extract useful information .
Fichier principal
Vignette du fichier
ismm2019.pdf (4.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02343890 , version 1 (13-11-2019)

Identifiants

Citer

Florent Guiotte, Sébastien Lefèvre, Thomas Corpetti. Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data. Mathematical Morphology and Its Applications to Signal and Image Processing, pp.391-402, 2019, ⟨10.1007/978-3-030-20867-7_30⟩. ⟨hal-02343890⟩
105 Consultations
264 Téléchargements

Altmetric

Partager

More