Statistical Learning for BCIs - Archive ouverte HAL
Chapitre D'ouvrage Année : 2016

Statistical Learning for BCIs

Rémi Flamary
Alain Rakotomamonjy
Michèle Sebag
  • Fonction : Auteur
  • PersonId : 836537

Résumé

This chapter introduces statistical learning and its applications to brain-computer interfaces (BCIs). It presents the general principles of supervised learning and discusses the difficulties raised by its implementation, with a particular focus on aspects related to selecting sensors and multisubject learning. The chapter also describes how a learning approach may be validated, including various metrics of performance and optimization of the hyperparameters of the considered algorithms. The goal of supervised learning is to construct a predictor function that assigns a label to any given example; this predictor function is constructed from labeled examples that provide a basis for this training process. One of the possible approaches for building BCIs that require less calibration with new users is to use training techniques based on information transfer, or multitask training techniques. Validating the results obtained in a given application serves two purposes in statistical learning: evaluating the chosen performance metric and optimizing the hyperparameters of the algorithm.

Domaines

Informatique
Fichier principal
Vignette du fichier
Flamary2016.pdf (405.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02343066 , version 1 (15-11-2022)

Licence

Identifiants

Citer

Rémi Flamary, Alain Rakotomamonjy, Michèle Sebag. Statistical Learning for BCIs. Brain–Computer Interfaces 1: Foundations and Methods, John Wiley & Sons, Inc., 2016, ⟨10.1002/9781119144977.ch9⟩. ⟨hal-02343066⟩
96 Consultations
57 Téléchargements

Altmetric

Partager

More