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Statistical Learning for BCls

Rémi FLAMARY, Alain RAKOTOMAMONT]JY and Michéle SEBAG

This chapter introduces statistical learning and its applications to
brain—computer interfaces. We begin by presenting the general principles of
supervised learning and discussing the difficulties raised by its
implementation, with a particular focus on aspects related to selecting sensors
and multisubject learning. This chapter also describes in detail how a learning
approach may be validated, including various metrics of performance and
optimization of the hyperparameters of the considered algorithms.

We invite the reader to experiment with the algorithms described here: the
illustrative experiments included in this chapter may be reproduced using a
Matlab/Octave toolbox!, which contains the implementation details of the
various different methods.

9.1. Supervised statistical learning

The goal of supervised learning is to construct a predictor function that
assigns a label to any given example; this predictor function is constructed
from labeled examples that provide a basis for this training process. The
predictor function is obtained by optimizing a certain criterion, which
includes a term for the empirical risk (the behavior of the function on the
given examples) and a regularization term (which guarantees the behavior of
the function on new examples).

Matlab/Octave toolbox: https://github.com/rflamary/mltool.



This section will describe the principles of supervised statistical learning,
as well as the two most important algorithms in the current state of the art. The
reader should refer to Lotte et al. [LOT 07] for a more detailed account of the
state of the art.

9.1.1. Training data and the predictor function

The objective of supervised statistical learning is to estimate a predictor
function f(x) : R? — Y which, given an observation x € R, predicts a
label y € Y [HAS 01, DUD 99]. The coordinates of the vector x are the
descriptive features extracted from the observation x (see Chapters 7, 8 and
10). Traditionally, we distinguish between methods of classification (or
discrimination), for which the label y is nominal (for example Y = {—1, 1} is
a problem of binary classification) and methods of regression, for which the
label g is real () = R).

In practice, the function f(-) is estimated from a set of n training examples
E = {(xi,4:),x; € R4, y; € ¥,i = 1,...,n}. The target function f(-) must
perform well on the given data (predict well the labels y; of the training data
x;) but must also, more importantly, perform well on future examples {x;, y; }:
we say that the function must generalize these data.

In this chapter, we will restrict attention to linear predictor functions,
defined by:

d
f(x) :ijxj+b:xTw+b [9.1]
j=1

where w € IR? is a vector of weights, wj is the weight of the jth coordinate
of the decision and function and b € IR is the bias (constant). Linear predictor
functions are the most commonly employed category of functions for
brain—computer interfaces due to the fact that they are easy to interpret (the
weight w; may be thought of as the impact of the jth coordinate) and they are
straightforward to train [BLA 06, TAN 12]. Note that linear functions
(equation [9.1]) return real values; in the case of problems of binary
classification, the predicted class is obtained by taking the sign of the function
f(-) and not its value.



Depending on the BCI context, the supervised learning problem is either a
problem of classification or regression. For example, tasks of motor imagery
are generally problems of classification (Figure 9.1, left). The coordinates of
x, for example, correspond to the values of the power in a frequency band
after CSP-type spatial filtering [LOT 11]. Similarly, a P300 speller task aims
to detect (classify) event-related potentials directly in the signal. In this case,
the features are, for example, given by the various different filtered and
subsampled EEG signals [RAK 08]. The predictor function, or classifier,
partitions the space into regions each of which corresponds to one class; the
separating hyperplane is defined by the vector w (normal to the separating
hyperplane). In contrast, tasks of movement prediction generally define
regression problems; the objective could, for example, be to predict a real
value that characterizes the position of a limb from the ECoG measurements
(see Figure 9.1, right).

Motor Imagery Classification Thumb flexion

Figure 9.1. Supervised learning: Data and prediction functions. Left: classification,
motor imagery data with two CSP filters and a LDA classifier that partitions the space.
Right: Regression, ECoG data with ridge regression. For a color version of this figure,
see www.iste.co.uk/clerc/interfaces1.zip

9.1.2. Empirical risk and regularization

As mentioned above, the objective of supervised statistical learning is to
make as few mistakes as possible over the full set of possible data (consisting
of both the training data and future data), or to be more precise, to minimize the



cost of all errors. The empirical risk is the average cost of the errors committed
on the training data:

n

Remp(f) = 3 Ly, fx0) 9.1

i=1

where L(y, f(x)) is the cost of replacing the label y with the prediction f(x)
for x. The loss function L also plays an important role in performance metrics
(section 9.3).

For classification, the best-known loss function is the 0 — 1 cost function
(Figure 9.2, left, shown in black); the cost of the error is 1 if the predictor
function has the same sign as the expected class y, and 0 otherwise. However,
the training problem defined by this cost function is difficult to solve: it
requires the optimization of a non-differentiable, non-convex function. Other
loss functions, such as the hinge loss [VAP 98, CHA 07] or the logistic cost
[TOM 07] are therefore often preferred (Figure 9.2, left, and Table 9.1).
Another alternative is the sigmoid cost function, traditionally used for
neural networks.
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Figure 9.2. lllustrations of a selection of different loss functions. Left:
Classification. Right: Regression. For a color version of this figure, see
www.iste.co.uk/clerc/interfaces1.zip

For regression, the objective is to predict a real value y. The error is
traditionally measured by the absolute value of the difference between y and



f(x) [DRA 81] (¢; loss function) or its square (¢ loss function). Least
squares or regularized least squares (ridge) regression uses the ¢y loss
function or mean square error. Another possible loss function is the
e-insensitive cost, which is equal to zero whenever the absolute value of the
error is less than € [SMO 04]. Using the absolute value ({1 or e-insensitive)
instead of the square (¢2) of the error makes the process more robust against
outliers (the impact of a term with a large error is smaller with ¢; than with

05).

Classification cost L(y, f(x))

0-1 cost 1,50<0 Reg. cost L(y, f(x))
Hinge max(0,1 —yf(x)) |[€2 cost (y — f(x))?
Hinge? max(0,1 — yf(x))* | [£1 cost ly — f(x)]
Logistic log(1 + exp(—yf(x))) | | e-insensitive cost |max(0, |y — f(x)| — €)
Sigmoid 1- tanh(yf( )))/2

Table 9.1. lllustrations of loss functions (Figure 9.2); Left:
Classification; Right: Regression

Note that in general minimizing the empirical risk is not sufficient
(equation [9.2]) due to the phenomenon of overfitting: overfitting is when the
function f(-) makes very few errors on the training data but produces high
levels of error on subsequent data. This phenomenon occurs frequently when
the number of examples n in the training data is small compared to the
complexity of the examples (e.g. the number d of attributes). To avoid
overfitting, we must limit both the empirical risk and the complexity of the
function f(-) by introducing a regularization term Q(f) [VAP 98]. The
optimization problem therefore becomes:

[9.3]

min

LS Bl 7)) + 20()
=1

where A > 0, the weight of the regularization term, is a parameter of the
algorithm that requires validation (see section 9.4). When f(+) is linear, the (o
norm of the gradient w of f(x) provides a good measure €2(f) of the
complexity, with Q(f) = Zle w?. This type of regularization is used in
practice for support vector machines (SVM) and ridge regression
(section 9.1.3). Another possible measure of complexity is the £; norm of w,
which has the advantage of implicitly selecting features, or sensors in the



context of BClIs, at the cost of introducing a non-differentiable term into the
training criterion (section 9.2).

Depending on the nature of the optimization criterion (equation [9.3]), the
solution can be found explicitly (e.g. by solving a linear system for ridge
regression or linear discriminant analysis [LDA]), or by optimization methods
such as the gradient descent method.

9.1.3. Classical methods of classification

This section will present two algorithms of linear classification, LDA and
SVMs. These algorithms have been successfully applied to
brain—computer interfaces, in particular in connection with the software
package OpenVibe.

9.1.3.1. Linear discriminant analysis

LDA is a Bayesian approach that assumes that the positive (and negative)
datapoints follow normal distributions in R? given by N (pu +,2) and
N(p_,X)), where p, and p_ are the means of the normal distributions and
3. is the covariance matrix (which is assumed to be identical for both classes).

The decision function f(-) is trained by identifying ¢, p_ and 3 and
maximizing the likelihood of the training data. f(-) is linear with

w=X""p—p), b=-w(u+p)/2 [9.4]

The parameters 3, pu, o are estimated empirically using the training
data. One of the limits of this approach is that depending on the dimension d
of the problem and the number n of training datapoints, the covariance matrix
may not be invertible. In practice, we take the inverse of the matrix
=3+ Al where 1 is the identity matrix of dimension d. It can be shown
that taking the inverse of 3 amounts to performing a quadratic regularization,
which may be interpreted as assuming an a priori Gaussian distribution for
the vector w with an assumed variance of 0 = 2/ ﬁ Note that LDA is a
special case of Fisher discriminant analysis (FDA), which is also widely used
for BCIs [WAN 04]. The reader can refer to [HAS 01, Chapter 4] for more
details on LDA and its quadratic extension Quadratic Discriminant Analysis



(QDA) when the covariances of each class are not equal. There exist many
other extensions of this approach; for example, stepwise LDA allows features
to be chosen using statistical tests [KRU 08]. The LDA method may also be
extended to work for multiclass classification.

The LDA approach, which is widely used for brain—computer interfaces
[BOS 04, BLA 04], is relatively simple to implement and does not involve any
hyperparameters (in its non-regularized version; in the regularized version, the
A parameter is added). Among the 18 datasets used in the last BCI competitions
[BLA 04, BLA 06, TAN 12], LDA and FDA were used in nine of the methods
with the best performance in the classification category.

Logistic regression, a classification method that is also used for BClIs
[TOM 07], introduces a logistic cost function (Table 9.1). Although this
technique is less widely used than LDA or SVM, it performs excellently for
linear classifications, particularly at higher dimensions.

9.1.3.2. Support Vector Machines (SVM)

Support Vector Machines or SVMs are obtained by minimizing a criterion
of type equation [9.3], where the empirical risk term is the hinge loss (Table
9.1 and Figure 9.2). The most common regularization term is the /o
regularization term, which effectively maximizes the margin, i.e. the
minimum distance between the points and the separating hyperplane.

Linear SVMs are a widely used category of classifiers for
BCIs [RAK 08, KAP 04]; they have produced state-of-the-art results in
detecting event-related potentials [RAK 08, LAB 10] and motor imagery
[SCH 05a]. Specifically, SVMs were the best performers in six of 18 of the
datasets of the three latest BCI competitions, in particular for the most recent
datasets [BLA 04, BLA 06, TAN 12].

Note that SVMs may be extended to train nonlinear classifiers using the
kernel trick, which replaces the scalar product with a similarity function and
thus generates a more complex separating boundary. However, despite some
very encouraging results in competitions [LAB 10], using nonlinear classifiers
is often viewed as unnecessary for BCls.



9.2. Specific training methods

In the context of brain—machine interfaces, the objective of methods of
statistical learning is essentially to train the function describing the
relationship between EEG signals and specific mental states
(presence/absence of P300, predefined intentions of movement). However,
more advanced, specific methods have also been developed to improve the
performance of the process of decoding these mental states, but also to reduce
the time required to calibrate the BCI system for new users. In the next few
sections, we will present a selection of recent methods that address these key
obstacles.

9.2.1. Selection of variables and sensors

For certain BCI paradigms such as BCI P300 spellers or BCI motor
imagery, a priori neurophysiological knowledge allows us to place EEG
sensors so that the quality of the recorded signal is nearly optimal.
Nevertheless, in certain contexts, such as during the development of new BCI
paradigms, or when the regions of interest in the cortex are damaged, it may
be desirable to explicitly optimize the positioning of the sensors. This
optimization might also be motivated by desire to improve performance by
removing sensors that only provide marginal information. The literature on
the topic of variable and sensor selection is very rich. We will only attempt a
limited review of these methods; we encourage interested readers to refer to
the references for more detail [GUY 03]. For BCIs, among the various
different available methods, two particular strategies of sensor selection have
been studied in most depth.

The first strategy finds the best-performing subset of sensors for
recognizing mental states by successively eliminating sensors
[LAL 04, SCH 05b, RAK 08]. The principle of the technique is to define a
selection criterion (typically the margin of a SVM classifier or an estimate of
generalized performance), denoted as C;.. The procedure begins by selecting
all sensors and then eliminating one sensor per iteration. The elimination
criterion is the following: at each iteration, the performance C; is calculated
for all remaining sensors, followed by the performance C,” where the jth



sensor has been omitted. The sensor chosen for elimination is the sensor that
minimizes:

’C’I‘ - C;]’

which is the minimum performance loss from eliminating a sensor. The
stopping criterion is a predefined number of sensors, or too great a decrease in
C,. In computational terms, this elimination criterion may be very expensive
to evaluate, however, in certain cases (margin criterion and linear SVM), it
has an analytical expression that is easy to calculate [SCH 05b].

Another possible way to select variables and sensors in BCI systems is
the technique of applying this selection process while the decision function
is being trained. This can be achieved by choosing directly in equation [9.3]
a regularization term that induces sparsity in the vector w and that implicitly
selects variables or sensors. Bach et al. present a review of recent work in this
area [BAC 12]. In the context of brain—machine interfaces, the most commonly
used regularization terms are based on non-differentiable norms as follows:

— the norm ¢; (w) = Zle |w;|. This norm generates unstructured sparsity
in the variables comprising the vector w. It is better suited for the selection of
variables than for the selection of sensors;

— the mixed norm ¢ ,(w) = Z‘j{fij}‘ (Zz‘eGj \wi|p)1/p. Here, the sets
{G;} form a disjointed partition of the indices 1 to d, so that the mixed norm
is obtained by calculating the ¢; norm of the vector of dimension |{G/; }| whose
Jjth component is given by the £, norm of the vector of elements indexed by G ;.
This norm tends to induce grouped sparsity in the indices contained in a certain
subset of the G;. Thus, if the sets G; are constructed so that they only contain
references to variables linked to a specific sensor, using a regularization term
of this type implicitly induces a process of channel selection.

Mixed norms were used for selecting groups of channels for the P300
speller BCI [TOM 10, FLA 14a] and the localization of EEG sources
[STR 14]. Using more complexly structured representations such as kernel
methods, Jrad et al. performed implicit sensor selection in multiple problems
of BCI learning using only the /1 norm [JRA 11]. Although we have only
discussed two types of norm here, other regularization terms may be
constructed from a priori knowledge of the problem at hand, depending on
the types of model that we wish to induce [BAC 12].



9.2.2. Multisubject learning, information transfer

One of the major hurdles for the widespread application of brain—-machine
interfaces is the current need for dedicated calibration specific to the person
using the interface. Even today, in most cases, before any such interface can
be effectively used, a session of EEG signal acquisition must first be organized
in order to obtain training data. There are multiple avenues of research based
on techniques of statistical learning that might possibly allow this hurdle to be
overcome.

One of the possible approaches for building brain—-machine interfaces that
require less calibration with new users is to use training techniques based on
information transfer, or multitask training techniques. These techniques
attempt to train multiple decision functions simultaneously and share the set
of available data. Thus, for brain—-machine interfaces, this is equivalent to
multisubject training. The objective of this approach is to attempt to
compensate for the fact that only limited training data are available for a given
classifier by transferring information from data that are available to other
classifiers. This idea has been successfully implemented in several research
projects. For example, Devlaminck ef al. [DEV 11] used this principle to train
spatial filters to adapt to subjects with very little available training data. Based
on the same principles of multitask training, Alamgir et al. [ALA 10] suggest
training EEG classifiers for different subjects by modeling their w vector as
the realization of a random variable from a normal distribution. With this
model, the average w vector is used for new subjects, and is subsequently
updated as more data becomes available. Remaining within this multitask
context, it is possible to select sensors common to multiple subjects using an
appropriate mixed norm [FLA 14a]. Experiments show that when training a
classifier to recognize P300 signals, significant performance gains are
achieved for subjects that otherwise perform poorly without information
transfer.

9.3. Performance metrics

This section presents a selection of the performance metrics used to
evaluate and compare the advantages of different hypotheses or algorithms,
considering the cases of classification and regression separately. These
performance metrics, which must always be estimated from data distinct from
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the training data (see section 9.4 [BLA 06, BLA 04]), test the generalization
capacity of the trained hypotheses. Readers can refer to Schlogl et al.
[SCH 07] for a more complete treatment of the topic of performance metrics.

9.3.1. Classification performance metrics

The traditional performance metrics used for classification problems are
based on the confusion matrix C, which for each pair of classes (¢, j) records
the number C; ; of instances of class ¢ that have been assigned to class j. If
the classification is perfect, the matrix C is diagonal. The accuracy (ACC)
is the fraction of properly classified instances (which are on the diagonal of
the confusion matrix), which is equal to the 0 — 1 error (section 9.1.2) and
estimates the Bayes error rate of the classifier. This rate was used in most
BCI competitions to evaluate the performance of the motor imagery classifiers
[BLA 06, BLA 04].

However, the accuracy is not a good measure of performance in the case of
strongly unequal class sizes: indeed, if one class contains 99% of the
datapoints, the trivial classifier that groups all points into the same class has
an accuracy of 99%. An alternate, more appropriate metric is Cohen’s Kappa
coefficient [CAR 96], which was also used in BCI competitions
[BLA 06, BLA 04], defined by

ACC — p, :
K= 1_7]9:9, with  pe = % > Q-GN Cia
i j

where p, is the probability that a random classification is correct. The mutual
information is another performance metric that is often used for BCIs
[NYK 01]. It is based on information theory [BLA 06, SCH 07] and measures
in bits the rate of information transmitted to the machine by the interface.

Another metric that is particularly well-suited for classes of unequal sizes
is the area under the receiver operating characteristics (ROC) curve (AUC), or
the Mann—Whitney—Wilcoxon score, given by:

AUC(f(-)) = Pr(f(x) > f(x)|ly > ¥)

Consider a binary classification hypothesis f(-) that takes values in R. For
any threshold 7 € IR, we can define the classifier f, that classes x in the
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positive class iff f(x) > 7, as well as the true positive rate TPR-
(P(f(x) > 7|y = 1)) and the false positive rate FPR , (P(f(x) < 7|y = 1)).
The monotone curve of the points (FPR,, TPR;) is called the ROC curve
(Figure 9.3). If there exists a threshold such that the classifier f(-), is perfect,
the ROC curve passes through (0,1) (0% false negatives and 100% true
positives). If instead the ROC curve coincides with the diagonal, any
improvement in the true positive rate is offset by an equal decrease in the
false positive rate: in other words, the classifier provides no information.
More generally, the area under the ROC curve measures the quality of the
hypothesis f(-), regardless of whether the classes are of similar size (since the
coordinates FPR - and TPR; are percentages).

Motor imagery classification P300 Speller classification

—

——LDA, AUC=0.843

——SVM. AUC=0.847

——Random classif. ) ) ) ) )
05 06 07 08 09 1 [ 01 02 03 0.4 05 06 0.7 08 09 1
FPR FPR

——LDA, AUC=0.923
SVM, AUC=0.924

—Random classif.

0 0.1 0.2 03 0.4

Figure 9.3. ROC curves for an application in motor imagery (left) and
P300 speller (right). Performance metric AUC: area under the ROC
curve. Horizontal axis, false positive rate (FPR); vertical axis, true
positive rate (TPR). For a color version of the figure, see
www.iste.co.uk/clerc/interfaces1.zip

The AUC criterion was used in the BCI MLSP 2010 competition
[HIL 10]; for the P300 speller in particular, since by construction, the positive
class contains far fewer instances than the negative class.

9.3.2. Regression performance metrics

For regression tasks, such as predicting the motion of limbs, other
performance metrics need to be considered [PIS 08]. Similarly to
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classification, the performance metrics are often linked to the cost term of the
error, which is minimized during training. Thus, for least squares regression,
the performance metric is the mean square error or o cost (Table 9.1). The
disadvantage of this metric is that it is not normalized (it depends on the
amplitude of the data y;), which makes comparing performance difficult for
tasks such as predicting finger flexion [LIA 12] and motion through space
[PIS 08].

One possible alternative is to take the correlation between the predicted
value f(x) and the observed value y as a performance metric. This metric is
equal to 1 in the case of monotone prediction (f(x) increases with y); if the
hypothesis provides zero information, the correlation is equal to 0. However,
correlation does not take into account the true value of the prediction, which is
important for tasks such as controlling the position of a cursor [WU 06].

9.4. Validation and model selection

Validating the results obtained in a given application serves two purposes
in statistical learning: evaluating the chosen performance metric (section 9.3)
and optimizing the hyperparameters of the algorithm. Readers can refer to
[DUD 99, HAS 01, JAP 14] for a more in-depth treatment of the topic of
validation.

9.4.1. Estimation of the performance metric

As mentioned earlier, the performance of a classifier f(-) on the training
data is ultimately not what we are interested in; by increasing the complexity
of f(-), it is always possible to construct a classifier that performs perfectly
on the known data. The end-goal is the capacity of generalization of f(-), that
is to say its performance on future data. We can attempt to evaluate the
general performance of f(-) by partitioning the available data into training
data, which is used to optimize f(-), and test data, which is used to estimate
the performance of f(-) in general. In doing so, we assume that the test data
extracted from the available dataset is a good representation of the future data
that the classifier will need to predict.

If there is plenty of available data, estimating the performance metric is
not particularly difficult: there are sufficient data to train a classifier f(-), and
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there are sufficient (other) data for estimating the performance of f(-). But this
task becomes more complex when there are limited available data, which is the
case for BCIs due to the cost of data acquisition. In this context, we must find
the right balance between reducing the quantity of training data (and therefore
reducing the quality of the training hypothesis) and reducing the quantity of
test data (and therefore reducing the reliability of the quality estimate).

In practice, there are three main approaches to this problem (Figure 9.4).
The preferred approach depends on the way that the training data and the test
data are constructed.

Data Hold out Random sampling K-fold cross validation Leave-One-Out Bootstrap
o o o C I ) o Qo
o o ") @ 9O O LX) o
o [ Qo @ @ o Q- o
o L o @ o o o 00
o Qo o C ) 0 o
Qo Qo Qo C N I X
Qo o o Q| @ o L X L
o o ") Q| @ o o o
Qo Qo o Q| @ o Qo o

o Training sample @  Test sample

Figure 9.4. lllustration of the different data partitions presented in this
chapter used to estimate the generalization error

9.4.1.1. Random sampling

The process known as the hold-out method randomly partitions the n
datapoints into training data £ and test data 7, uses £ to train a hypothesis
f() and then measures the performance of the hypothesis f(-) on 7. This
performance might potentially have a large variance (if the datapoints in £ are
easy to classify, and those in 7 are difficult, or vice versa). To reduce the
variance, the method of random sampling repeats the hold-out method by
considering K independent samplings for the training data and the test data.
The performances obtained on each of the different sets of test data are then
averaged. The average performances and their confidence intervals for two
different classifiers may be used as a basis for comparison to determine
whether one is superior to the other to a certain degree of significance using a
standard hypothesis test. Since training is repeated K times on independent
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sets of training data, and the performances on the test data are averaged, this
process makes the performance metric more robust against the randomness
inherent in sampling at the cost of increasing the number of calculations by a
factor of K.

9.4.1.2. K-cross-validation and leave-one-out

K -fold cross-validation partitions the n datapoints into K subsets of equal
size. A series of hold-out processes is then performed by taking each of the
subsets as the testing dataset, and the remaining data as the training dataset.
As above, the performance is estimated by the average of the performances on
the K testing subsets. Compared to random sampling, cross-validation reduces
the variance of the estimate (each datapoint is included exactly once in the
testing dataset). When the number of available datapoints is very low, we may
in particular choose K equal to the number n of points: cross-validation is
then equivalent to the leave-one-out (LOO) method, which performs training
on all datapoints except one, saving the final point to test the trained classifier.

The choice of K involves establishing a compromise between the bias and
the variance: as K increases, the bias of the estimate decreases (given some
weak assumptions [HAS 01]) but the variance increases, because the various
training datasets are strongly correlated. The complexity also increases with
K. Finally, the choice of K fundamentally depends on the number n of
datapoints. If n is large relative to the number d of descriptive attributes, low
values of K may be considered sufficient (KX = 2...10), and the variance
may be reduced by repeating cross-validation on five different partitions of
the data.

For BClIs, cross-validation is normally used when the performance is good
(see, for example, Labbé er al. [LAB 10] on estimating the performance of
processes for recognizing P300 signals).

9.4.1.3. Bootstrapping

Bootstrapping constructs the training data using n uniform samples with
replacement from the n available datapoints. Certain points can therefore be
present multiple times in the training data, and others may be omitted; on
average, the fraction of non-selected points is 37% of the available data.
Classifier performance estimation is performed on the whole of the available
dataset; as above, the performance is averaged over multiple different samples
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for the training data. This method of estimation is less optimistic than LOO;
the bias is similar to the bias of cross-validation with K = 2 [HAS 01].
Despite this bias, performance rankings of hypotheses using bootstrapping are
usually considered reliable.

Validation for Motor Imagery

Validation for P300 Speller

&8 /
095 /
e /
o094 /
0s3f
0921 — Real perf. in tests 085 —Real perf. in tests
— Hold-ouf — Hold-ouf
osil Valid. K-fold o8t Valid. K-fold
Random sample —— Random sample
LOO-Bootstrap LOO-Bootstrap
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Figure 9.5. lllustration of the different methods of estimating the generalization error
on two different classification datasets. Left: Motor imagery classification with very
few datapoints, performance metric = accuracy (ACC). Right: Detection of triggered
potential for P300 speller, performance metric = area under the ROC curve (AUC). For
a color version of the figure, see www.iste.co.uk/clerc/interfaces1.zip

9.4.2. Optimization of hyperparameters

Training algorithms often involve hyperparameters, such as the weight of
the regularization term (equation [9.3], A parameter), or the kernel parameters
of a nonlinear SVM (standard deviation of a Gaussian kernel, degree of a
polynomial kernel). Naturally, it is desirable to find the values of
hyperparameters that produce the optimal performance in generalization. The
recommended procedure for doing so is as follows. The available data are
partitioned into three sets: the training set £, the test set 7 and the validation
set V.

Starting with £ and a vector 6 of hyperparameters, the performance is
measured on the whole of the test set 7, denoted as F(6). The question may
then be rephrased as finding the optimal vector of hyperparameters 6*:

0" = argmax{F(0)}
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After finding 6* (see below), it is useful to recalculate the value of the
performance metric. Indeed, since 6* was determined using the information
present in £ and 7, the performance metric F () is optimistic on 72. So, 6* is
used for training on £ | J 7, and the classifier thus obtained is evaluated on the
validation set V), which has not yet been considered.

0* may be determined in one of three ways. If the algorithm involves a low
number of hyperparameters (§ € R, with d = 2.3), the usual method is an
exhaustive search over a grid in the parameter space [CHA 11, RAK 08]. This
grid may be regular (e.g. the degree of a polynomial taken within 1, 2,...,10)
or not (e.g. varying the regularization weight by powers of 10, A = 107, for
1= —3...3) . An example of exhaustive search for x is shown in Figure 9.5.
The advantage of this method is its simplicity; however, the cost increases
exponentially with the number of hyperparameters involved in the algorithm.

If the performance metric F (or an approximation or a bound for this
metric) is differentiable, #* may be found using gradient descent methods.
This approach was used, for example, to optimize the hyperparameters of a
SVM [CHA 02, FLA 14b], and for linear discriminant analysis with two
classes [KEE 06]. Although complex to implement, this method has the
advantage of being less costly than the previous method when the number of
parameters is large.

Finally, if F is known only as a black box (an algorithm that returns the
value of F(0) for each 6), we can use stochastic methods or black box
optimization, ranging from simulated annealing to evolution-based strategies
[HAN 01]. In general, stochastic optimization algorithms apply a dynamic
distribution to the search space, which is gradually biased toward the regions
of best performance. The covariance—matrix—adaption algorithm3 achieves
this by adapting the parameters of a Gaussian distribution so that it gradually
converges toward an optimum of the target function. This method is more
costly than the previous methods: it requires F(6) to be evaluated for a
relatively large number of hyperparameter vectors 6, whereby calculating one
single F(0) requires training and evaluating a classifier. Hybrid methods of
optimization combining stochastic optimization of F and the training of an
approximation of JF, called a surrogate model (surrogate model-based

2 It would be cheating to assume that F(0™) represents the true performance of the classifier.
3 https://www.Iri.fr/ hansen/cmaes_inmatlab.html.
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optimization), are therefore used for optimizing the hyperparameters of
general learning algorithms [BER 12, BAR 13], and, in the particular context
of BClISs, for the selection of variables [GAR 03, SCH 03, COR 11].

9.5. Conclusions

This chapter gives a short presentation of the principal methods of
supervised learning used with brain—computer interfaces, with a focus on the
practical challenges posed by their implementation. References to some
recent and promising work were included, so that readers may explore these
topics in more depth according to their individual context. Finally, the
validation of obtained results is an essential aspect of machine learning, both
for optimizing the implementation of an algorithm and as a basis for a
rigorous comparison of different algorithms.
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