Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Physics Année : 2019

Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds

Résumé

We demonstrate, on a scramjet combustion problem, a constrained probabilistic learning approach that augments physics-based datasets with realizations that adhere to underlying constraints and scatter. The constraints are captured and delineated through diffusion maps, while the scatter is captured and sampled through a projected stochastic differential equation. The objective function and constraints of the optimization problem are then efficiently framed as non-parametric conditional expectations. Different spatial resolutions of a large-eddy simulation filter are used to explore the robustness of the model to the training dataset and to gain insight into the significance of spatial resolution on optimal design.
Fichier principal
Vignette du fichier
publi-2019-JCP-399()1-14-ghanem-soize-sfta-et-al-preprint.pdf (1.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02341912 , version 1 (17-11-2019)

Identifiants

Citer

Roger Ghanem, Christian Soize, C. Safta, X. Huan, G. Lacaze, et al.. Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds. Journal of Computational Physics, 2019, 399, pp.108930. ⟨10.1016/j.jcp.2019.108930⟩. ⟨hal-02341912⟩
100 Consultations
235 Téléchargements

Altmetric

Partager

More