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Abstract

We demonstrate, on a scramjet combustion problem, a constrained probabilistic learning approach that
augments physics-based datasets with realizations that adhere to underlying constraints and scatter. The
constraints are captured and delineated through diffusion maps, while the scatter is captured and sampled
through a projected stochastic differential equation. The objective function and constraints of the opti-
mization problem are then efficiently framed as non-parametric conditional expectations. Different spatial
resolutions of a large-eddy simulation filter are used to explore the robustness of the model to the training
dataset and to gain insight into the significance of spatial resolution on optimal design.

Keywords: Scramjet simulations, Machine learning, Uncertainty quantification, Optimization under
uncertainty, Sampling on manifolds, Diffusion maps

1. Introduction

Model-based design optimization is a significant capability for systems whose behavior has not yet been
catalogued but where functional dependence of system behavior on component behavior can be described
through conservation or other such fundamental principles. These systems typically include new designs
with no corresponding legacy knowledge and complex systems for which perturbations in any component has
consequences on system-level performance. Predictive models for these systems are typically discretizations
of mathematical formulations of the underlying fundamental principles resulting in computational models
with very significant computational requirements. It is typical for such systems, given their novelty or
complexity, to invoke reductions that could be either physical, mathematical, or algorithmic in nature. The
impact of these reductions on the predicted performance of any given design can put into question the optimal
character of solutions obtained through traditional design optimization procedures. One rational formalism
for accounting for these assumptions throughout the design process is to explore the robustness of an optimal
solution to perturbations in these assumptions. Probabilistic modeling provides an effective procedure for
characterizing these assumptions and has typically been implemented through either parametric procedures
where model parameters are described as random variables [1, 2, 3, 4, 5] or within a non-parametric framework
where the model itself is described as a random operator [6]. Irrespective of how a non-deterministic problem
is implemented, it requires the numerical exploration of a statistical ensemble, thus quickly exacerbating
the computational burden of an already massive exercise. Clearly, new perspectives on characterizing and
evaluating performance and optimal designs of complex systems are required if physics-based modeling is
indeed a necessary ingredient of the prediction and optimization process.
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In this paper we tackle the above challenge in the context of a hypersonic combustion process. Large-
eddy simulation (LES) modeling is used to discretize the Navier-Stokes equations, with several of the filtering
parameters and operational parameters described as random variables. In the process, we rely on a new
methodology developed by the authors that conjoins diffusion maps and projected Itô sampling to augment
a small statistical ensemble (the training set) with a large number of realizations that are consistent, in a
useful sense, with both underlying mechanisms and evidence. Diffusion maps [7] are used to extract nonlinear
manifolds from the training set, while the Itô samplers [8] are used to sample on these manifolds from a spec-
ified target probability measure. We construe these manifolds as encoding non-parametric characterization
of constraints on the data, including physics-based constraints.

The optimization problem is typically formulated in terms of several quantities of interest (QoIs) that
are themselves functionals of the field variables constituting the solution of the LES problem. The map
from input parameters to QoIs is a composition of two maps. First is the map represented by the numerical
solver, which encodes conservation laws as described by the LES model. This is followed by a postprocessing
map that evaluates the QoIs, which enter in the evaluation of objectives and constraints. The LES map is
challenged with a computational burden that limits its ability to efficiently explore parameter space, a key
requirement for design optimization. The postprocessing map faces its own challenges, namely the lack of
apparent physics-based constraints on the QoIs, which forces the characterization of the QoIs in terms of
the input parameters and the LES map. These challenges notwithstanding, it can be expected that these
two maps do indeed constrain the QoIs, albeit in an unknown and intractable manner. By discovering
these constraints, the task of input space exploration would be reduced to exploring a low-dimensional
manifold. For that, we propose to use the probabilistic learning on manifolds [9, 4] that relies on diffusion
maps (DMAPS), with the corresponding manifold characterized through a positive definite operator and
its associated projections. Then, statistical sampling on this manifold is readily accomplished as described
above, via a projected Itô equation whose invariant measure is a nonparametric statistical estimate of the
measure of the training data, represented as a Gaussian mixture model. We compare optimization results
obtained from three LES models representing different spatial resolutions, and explore the impact of the size
of the training set on the resulting optimal designs.

The paper is organized as follows. In the next section, an overview is presented on the physics problem
representing scramjet combustion. Following that, probabilistic learning on manifolds using diffusion maps
and Itô sampling is described. The optimization problem under uncertainty is then illustrated and its solution
analyzed. Some remarks are presented in a concluding section.

2. Overview of the hypersonic reactive flow model

Our physical application of interest stems from the HIFiRE (Hypersonic International Flight Research
and Experimentation) program [10, 11], which has cultivated a mature experimental campaign with acces-
sible data through its HIFiRE Flight 2 (HF2) project [12, 13]. The HF2 payload involves a cavity-based
hydrocarbon-fueled dual-mode scramjet and was tested under flight conditions of Mach 6–8+. A ground
test rig, designated the HIFiRE Direct Connect Rig (HDCR) (Figure 1(a)), was developed to duplicate
the isolator/combustor layout of the flight test hardware, and to provide ground-based data for compar-
isons with flight measurements, verifying engine performance and operability, and designing fuel delivery
schedule [14, 15]. While data from flight tests are not publicly released, HDCR ground test data are avail-
able [14, 16]. Therefore, we aim to simulate and assess behavior of reactive flows inside the HDCR, in order
to facilitate future computational developments that can make use of these experimental datasets.

The computational domain for the HDCR is highlighted by red lines in Figure 1(b). The rig consists of
a constant-area isolator (planar duct) attached to a combustion chamber. It includes primary injectors that
are mounted upstream of flame stabilization cavities on both the top and bottom walls. Secondary injectors
along both walls are positioned downstream of the cavities. Flow travels from left to right in the xs-direction
(streamwise), and the geometry is symmetric about the centerline in the ys-direction. Numerical simulations
take advantage of this symmetry by considering a domain that covers only the bottom half of this configura-
tion. The fuel supplied through the injectors is a gaseous mixture containing 36% methane and 64% ethylene
by volume, which acts as a surrogate with similar combustion properties as JP-7 [17]. A reduced, three-step
mechanism [18, 19] is initially employed to characterize the combustion process. Arrhenius formulations of
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(a) HDCR (b) Computational domain

Figure 1: HDCR cut view [14] and schematic of the computational domain.

the kinetic reaction rates are adopted, and the parameters are selected to retain robust/stable combustion
in the current simulations.

LES calculations are then performed using the RAPTOR code framework developed by Oefelein [20,
21, 22]. RAPTOR solves the fully coupled conservation equations of mass, momentum, total energy, and
species for a chemically reacting flow. It is designed to handle high Reynolds number, high pressure, real
gas and liquid conditions over a wide range of Mach numbers while accounting for detailed thermodynamics
and transport processes at the molecular level. The numerical schemes in RAPTOR involve non-dissipative,
discretely conservative, staggered, finite volume differencing. This scheme is well-adapted to LES simulations
as it eliminates numerical contamination of the subfilter due to artificial dissipation and ensures proper
discrete conservations. The subfilter closure is obtained using a mixed Smagorinsky model [23, 24].

In our numerical studies, we designate five input variables as design variables that we can directly control
during the design optimization process. These design variables are the global equivalence ratio (φG), ratio
of primary to secondary injector equivalence ratios (φR), location of the primary injector (x1), location of
the secondary injector (x2), and inclination of the primary injector (θ1). Specifically, if φ1 and φ2 denote the
equivalence ratios from the primary and secondary injectors, respectively, then φG = φ1+φ2 and φR = φ1/φ2.
The feasible design ranges are shown in Table 5. Furthermore, we allow a total of 11 model parameters to
be uncertain, shown in Table 1 along with their uncertainty distributions. These distributions are assumed
uniform across the ranges indicated.

The data utilized in the current analysis are from two-dimensional simulations of the scramjet compu-
tation, using grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175
mm (respectively denoted by “d/8”, “d/16”, and “d/32” cases in this paper), corresponding to respectively
around 63 thousand, 250 thousand, and 1 million grid points. The number of time steps for each run are
selected to maintain an approximately equal wall-clock time, while timestep sizes are determined adaptively
based on the Courant-Friedrichs-Lewy (CFL) criterion. The simulations are warm-started on solutions en-
gineered from a quasi-steady state nominal condition simulation, and take around 1.7× 103, 1.1× 104, and
3.9 × 104 CPU hours per run for d/8, d/16, and d/32, respectively. The intense computational demand
thus limits us with a total of 1053, 222, and 23 simulation runs for d/8, d/16, and d/32, respectively, where
the simulation inputs are uniformly randomized jointly in the parameter and design spaces. Several QoIs
are considered in this paper, either computed directly in the LES code or evaluated subsequently through
postprocessing. All QoIs are time-averaged variables, where the instantaneous solutions corresponding to
the second half for each run are time-averaged to generate one solution per run. The entire set of QoIs are
described below, and while only a subset (in Table 4) directly enter the optimization problem definition, the
rest (in Table 2) are retained to assist the discovery of the probabilistic manifold.

• Combustion efficiency (ηcomb), a critical performance indicator for engines, is defined based on
static enthalpy quantities [15, 25]:

ηcomb =
H(Tref, Ye)−H(Tref, Yref)

H(Tref, Ye,ideal)−H(Tref, Yref)
. (1)
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Here H is the total static enthalpy, the “ref” subscript indicates a reference condition derived from the
inputs, the “e” subscript is for the exit, and the “ideal” subscript is for the ideal condition where all
fuel is burnt to completion. The reference condition corresponds to that of a hypothetical non-reacting
mixture of all inlet air and fuel at thermal equilibrium. The numerator, H(Tref, Ye)−H(Tref, Yref), thus
reflects the global heat released during the combustion, while the denominator represents the total heat
release available in the fuel-air mixture.

• Burned equivalence ratio (φburn) is defined to be equal to φburn ≡ φGηcomb. It represents the air ex-
cess, and high values of φburn results from a combination of high thermal efficiencies and stoichiometric
to rich equivalence ratios, and are associated with conditions away from blowout regimes.

• Stagnation pressure loss ratio (Pstagloss) is defined as

Pstagloss = 1− Ps,e
Ps,i

, (2)

where Ps,e and Ps,i are the wall-normal-averaged stagnation pressure quantities at the exit and inlet
planes, respectively. Higher values of Pstagloss illustrate pressure loss across the combustor and are
associated with a decrease in efficiency.

• Maximum root-mean-square (RMS) pressure (max Prms) is the maximum RMS pressure across
the spatial domain:

maxPrms = max
x,y

√
P (x, y)2 −

[
P (x, y)

]2
, (3)

with P indicating time-averaged quantity. This QoI reflects the maximum pressure oscillation ampli-
tude, which is useful for engine structural considerations.

• Turbulence kinetic energy (TKE) is characterized by the RMS velocity at a given location:

TKE =
1

2

(
u2rms + v2rms

)
. (4)

In the numerical investigations of this paper, we will look at TKE from multiple streamwise locations
at xs/d = 5, 50, 85, 110, 140, 190, 220. TKE captures statistical signatures of the spatial heterogeneity
of turbulence.

• Initial shock location (xshock) is the most upstream shock location, which we currently compute by
detecting a rapid pressure change. More upstream locations of the initial shock train are linked with
higher chances of unstart and vibration, and degraded safety of the scramjet engine.

3. Probabilistic Learning on Manifolds

The initial data set, denoted by [xd], consists of N samples of Rn-valued vectors, and is represented as an
n×N matrix. Here, n denotes the number of observables for each sample. The data can be thought of as N
points residing on a manifold in a n-dimensional ambiant space. Alternatively, the data can be viewed as n
points in N -dimensional space. Through a diffusion maps analysis [7, 26, 27], the manifold localization in Rn
is restated as subspace localization in RN , providing a more structured context for analysis. We first apply
an affine transformation on the data using the eigenvectors of the empirical covariance matrix, transforming
matrix [xd] into a new matrix [ηd] whose rows are orthogonal. The purpose of this transformation is not
to reduce dimensionality, but rather to improve the numerical conditioning of the data, and to permit a
probabilistic treatment with uncorrelated variables. In some instances, dimension reduction may ensue,
reflecting very strong linear correlations in the data. This step of the analysis incurs minimal computational
burden while permitting us to leverage prior knowledge in the form of the empirical covariance of the data.
Thus in general, matrix [ηd] will be an ν×N matrix, with ν ≤ n. In the next subsection, we provide a brief
overview of the diffusion maps construction, followed by a brief overview of the projected Itô equation to
sample on the associated manifolds.
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Parameter Range Description
Inlet boundary conditions:

p0 [1.406, 1.554]× 106 Pa Stagnation pressure
T0 [1472.5, 1627.5] K Stagnation temperature
M0 [2.259, 2.761] Mach number
Ii [0, 0.05] Turbulence intensity horizontal component
Ri [0.8, 1.2] Ratio of turbulence intensity vertical to horizontal components
Li [0, 8]× 10−3 m Turbulence length scale

Fuel inflow boundary conditions:
If [0, 0.05] Turbulence intensity magnitude
Lf [0, 1]× 10−3 m Turbulence length scale

Turbulence model parameters:
CR [0.01, 0.06] Modified Smagorinsky constant
Prt [0.5, 1.7] Turbulent Prandtl number
Sct [0.5, 1.7] Turbulent Schmidt number

Table 1: Uncertain input parameters. The uncertainty distributions are assumed uniform across the ranges shown.

Observable Description
TKExs Turbulent kinetic energy at xs/d=5, 50, 85, 110, 140, 190, 220
xshock Upstream shock location

Table 2: Additional observables from simulation output that do not directly enter the optimization formulation but are used
for detecting the manifold. xs is streamwise distance.

3.1. Diffusion Maps
The starting point for a DMAPS analysis is a symmetric, positivity preserving and positive semi-definite

kernel, k(x, y), used to analyze the data. We rely on a positive-definite Gaussian kernel of the form,

k(x, y; ε) = e−‖x−y‖
2/ε , x, y ∈ Rν , (5)

where ε denotes the kernel width. The N×N matrix [K] is then constructed on the data [ηd] as follows,

[K]εij = k(ηd,i, ηd,j ; ε) (6)

where ηd,i is the ith columns of [ηd]. By normalizing [K] as follows,

[P ] = [b]−1[K] , [b]ij =

ν∑
`=1

[K]i` δij (7)

the resulting matrix [P ] can be construed as the transition matrix of a random walk on the graph associated
with the data [7]. The right eigenvector gα of [P ] such that [P ] gα = λα g

α can be written as gα = [b]−1/2ϕα

in which λα and ϕα are the eigenvalues and eigenvectors of the symmetric positive-definite matrix [Ps] =
[b]1/2[P ] [b]−1/2 = [b]−1/2[K] [b]−1/2. Consequently, the family of vectors {gα}α spans RN . More importantly,
sorting the eigenvalues such that 1 = λ1 > λ2 ≥ . . . ≥ λm, it can be shown that the original data set [ηd] is
localized within the span of the first few m of these eigenvectors {gα, α = 1 · · · ,m} [28, 7]. We also denote
by [g] the matrix whose αth column is gα ∈ RN . The value of m is chosen to correspond to a noticeable
reduction in the magnitude of the eigenvalues, specifically

m = arg min
α

{
λα
λ2

< L

}
(8)

with L chosen to be equal to 0.1. Typically, the ratio λm/λ2 is of the order of 0.1. Clearly, these eigenvalues
and hence the optimal value of m depend on ε, the width of the diffusion kernel. A maximum entropy
argument [29] is used to simultaneously select the values of ε and m.
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3.2. Itô Sampler on Manifolds

We construe localization to the manifold as satisfying underlying constraints, including the prevailing
physics. This is justified by the fact that the information used to delineate the manifold is obtained from LES
simulations. Any structure that relates the observables is thus inherited from the underlying physics. Our
next task is to sample on this manifold in a manner that is consistent with the scatter originally observed
in the data. In order to generate additional samples on the manifold, we first construct a probability model
from the initial training data set, [ηd]. Two assumptions are required for this construction [9]. We first
assume that the N columns of [ηd] are independent realizations of an Rν-valued random vector H whose
empirical covariance matrix is the identity matrix, and estimate its probability density function (PDF) as a
Gaussian mixture in the form,

pH(η) =
1

N

N∑
j=1

π

(
ŝν
sν
ηd,j − η

)
, (9)

where π is the positive function from Rν into ]0 ,+∞[ defined, for all η in Rν , by

π(η) =
1

(
√

2π ŝν )ν
exp

{
− 1

2ŝ 2
ν

‖η‖2
}
, (10)

with ‖η‖ denoting the Euclidean norm in Rν and where the positive parameters sν and ŝν are defined by

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2ν + N−1
N

. (11)

With this choice of sν and ŝν the mean-squared error is minimized [30] and realizations of random vector H
are normalized, a requirement consistent with their construction through an eigen-decomposition [8]. This
is the PDF of random vector H characterized by equation (9), we now consider the joint occurrence of the
N data points. This joint behavior is significant as it carries a signature of intrinsic structure not available
in each data point separately. We are looking for structure beyond linear correlation. We thus consider
matrix [ηd] as a realization of a random matrix [H], for which we next construct a probability model. We
now invoke our second assumption, whereby we consider the N columns of [H] as statistically independent,
with the density of [H] given by,

p[H]([η]) = pH(η1)× . . .× pH(ηN ) . (12)

We thus obtain a nonparametric Gaussian mixture model for the PDF of random matrix [H]. Each realization
of this random matrix will augment the initial training set [ηd] with N new data points each of dimension ν.
Alternatively, these realizations are first transformed through the eigenvectors of the empirical covariance of
the original data, and are thus used to augment matrix [xd] with N new data points, each of dimension n.
We next describe the procedure for generating samples of [H] from the PDF specified in Equation (12).

The approach consists of constructing an Itô equation that is constrained to the manifold, through
projections, and whose invariant measure has the density specified by Equation (12). First, we introduce
the projection [a] on the subspace spanned by the [g],

[a] = [g] ([g]T [g])−1 , (13)

the ν×N matrix [N ] whose entries are independent standard gaussian variables, the ν×N random matrix
[Hd] with known realization is [ηd], and the ν×N matrix [dW (r)] (r ≥ 0) whose ith column is dW i with
{W i, i = 1, · · · , N} being independent copies of the ν-dimensional normalized Wiener process. It can then
be shown that solutions {Z(r), r ≥ 0} of the following Itô stochastic differential equations [9]

d[Z(r)] = [Y (r)] dr , (14)

d[Y (r)] = [L([Z(r)] [g]T )] [a] dr − 1

2
f0 [Y (r)] dr +

√
f0 [dW (r)] [a] , (15)
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with the initial condition
[Z(0)] = [Hd] [a] , [Y (0)] = [N ] [a] a.s. , (16)

are samples from the ν×N random matrix [H] = [Z] [g]T with PDF p[H]([u]) = c q([u]) in which c is a
constant of normalization, and where

[L([u])]k` =
∂

∂u`k
log{q(u`)} , [u] = [u1, . . . , uN ] . (17)

Given our choice of Gaussian mixture model for q, the expression for [L] can be expanded as follows,

[L([u])]k` =
1

q(u`)

1

ŝ 2
ν

1

N

N∑
j=1

(
ŝν
sν
ηd,j − u`

)
exp

{
− 1

2ŝ 2
ν

∥∥ ŝν
sν
ηd,j − u`

∥∥2} . (18)

The Itô equations specified by Equations (14) and (15) are solved using a Störmer-Verlet algorithm, a
symplectic scheme well-adapted to Hamiltonian non-dissipative systems [31]. In that scheme, we use a value
of f0 equal to 0.43, and an integration step of 0.02.

3.3. Conditional Expectations

All the observables are used to characterize the basis vectors for the diffusion maps, and they all contribute
to its construction. The greater the number of observables, the more distinct the interdependence between
them, and the more robust is the associated manifold. Only a subset of these observables (QoIs), however,
is relevant to the design optimization problem. Thus, once the manifold has been characterized and the
initial training set augmented as described in the previous section, new observables relevant to the objective
functions and constraints are constructed from the QoIs and conjoined to the control observables to construct
a conditional expectation engine to be used in solving the optimization problem.

Thus, denoting the mq QoIs by Q and the mw control variables by W, either the objective function or
each of the constraints can be expressed as a conditional expectation of the generic form,

I = E{R
∣∣W = wo} (19)

in which E is the mathematical expectation, and where R is a scalar function of Q and W. We next describe
efficient procedures for evaluating this expectation using the Gaussian kernel-density estimation method.
We first introduce the following normalizations,

R̂ = (R−R)/σR, Ŵj = (Wj −W j)/σj , j = 1, · · ·mw (20)

where an overline denotes the mean of a random variable, σR is the standard deviation of R and σj the
standard deviation of Wj . These means and standard deviations are estimated using all the additional νs
samples synthesized by the projected Itô sampler. These samples are also used to construct a nonparametric

model of the joint density function of R̂ and Ŵ of the following form [30]

p
Ŵ,R̂

(ŵo, r̂) '
1

νs

νs∑
`=1

1

(
√

2π s)mw+1
exp

{
− 1

2s2
{‖ŵ` − ŵo‖2 + (r̂` − r̂)2}

}
, (21)

where the kernel width is given by [30]

s =

(
4

νs(2 +mw + 1)

)1/(4+mw+1)

. (22)

The choice of separable kernel in Equation (21) presumes local statistical independence between R and W.
While this assumption does not generally hold, it has diminishing influence as νs becomes very large, which
is presently the case. A nonparametric regression of random variable R on the control variables can then be
obtained in the form [4, 30],

E{R |W = wo} '

νs∑
`=1

r̂` exp

{
− 1

2s2
‖ŵ` − ŵo‖2

}
νs∑
`=1

exp

{
− 1

2s2
‖ŵ` − ŵo‖2

} σR +R . (23)
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Resolution N=Size of training set ε n ν m
d/8 50 100 200 500 1053 441 28 24 (25-29)
d/16 50 100 150 222 441 28 25 27
d/32 10 12 14 16 18 20 23 159 9 8 9

Table 3: Spatial resolution and size of training set for all cases; ε=width of diffusion kernel; n= number of observables per
sample; ν=dimension of de-correlated variables; m=dimension of diffusion map.

In the above, r̂` and ŵ` are realizations of R̂ and Ŵ, respectively. In evaluating chance constraints, it is often
required to compute the probability of a random variable R exceeding some threshold value, qf , conditional
on a specified values wo of the control variables. This probability can be expressed as the following integral,

h(qf ,wo) = P[R > qf
∣∣W = wo] '

∫ +∞

qf

pR|W(r|wo) dr , (24)

which can be estimated as [5]

h(qf ,wo) '

νs∑
`=1

h`(q̂f ) exp

{
− 1

2s2
‖ŵ` − ŵo‖2

}
νs∑
`=1

exp

{
− 1

2s2
‖ŵ` − ŵo‖2

} (25)

where

q̂f = (qf −R)/σ , h`(q̂f ) =
1

2

(
1− erf

(
(q̂f − r̂`)/(s

√
2)
))

(26)

and erf(y) =
2√
π

∫ y

0

e−t
2

dt is the error function.

The augmented datasets were generated for each of the three spatial resolutions, d/8, d/16 and d/32. For
each of these three cases, different values of N , the size of the training set, were used to delineate different
manifolds and integrate forward the associated projected Itô sampler. The various cases are shown in Table
(3). For d/8 and d/16, the 28 observables shown in Tables (1), (2), (4), and (5) are included in the manifold
detection process. For the case d/32, given the small number of training samples (maximum of 23), only
9 observables were included in the analysis, consisting of the 4 QoIs and 5 controls, shown in Tables (4)
and (5), respectively. The value of ν, representing the dimension of the decorrelated observations is also
shown in table (3). A threshold of 99% was used for truncation in this representation, and the ensuing slight
reduction in the dimension of observables is indicative of strong linear dependence of one or two variables on
the remaining variables. The value of m shown in Table (3) represents the number of eigenvectors retained
in the characterization of the diffusion manifold following the criterion specified by Equation (8). We note
that the dimension of the DMAP embedding, m, is often larger than the dimension ν of the decorrelated
observations. This reinforces the notion that the reduction achieved via this embedding is relative to the
size of the data, N , and not relative to the size of the ambient space. This is consistent with the procedure,
whereby the choice of observables in the training dataset is not necessarily exhaustive, and the ability of the
DMAP construction to detect an intrinsic dimensionality irrespective of such limitations.

We also note that the number of sufficient points, N , depends on the level of fluctuations across several
sets of N points. If the manifold coordinates fluctuate noticeably across N -point samples, then the size of
the sample is not sufficient. Our analysis, therefore, does not only consider the embedded dimensionality,
but also the uncertainty which could be due to unobserved dynamics.

The reactive flows used in this paper to describe scarmjet combustion are sufficiently complex that
higher spatial resolutions result in distinctly new behaviors (that are arguably closer to reality) and not
mere numerical refinements. With this in mind, it is expected that the coarser discretizations should exhibit
greater fluctuations and necessitating more samples to be sufficiently-well characterized statistically. Indeed,
an analysis of d/8 and d/16 models using training sets of size N smaller than 50 did not converge during
the optimization task.
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Variable name Symbol Lower/Upper bound
Q1=Burned equivalence ratio φburn ≥ L1 = 0.1900
Q2=Combustion efficiency ηcomb to be maximized
Q3=Stagnation pressure loss Pstagloss ≤ U3 = 0.3700
Q4=Maximum RMS pressure maxPrms ≤ U4 = 0.2705

Table 4: Quantities of interest

Variable name Symbol Range
w1=Global equivalence ratio φG [0.5-1.0]
w2=Primary-secondary ratio φR [0.25-0.35]
w3=Primary injector location x1 [0.231-0.2564](m)
w4=Secondary injector location x2 [0.40755-0.43295](m)
w5=Primary injector angle θ1 [5-25]◦

Table 5: Control variables

For each of the cases shown in this table, a total of nNMC samples of [Z(r)] were generated according
to the manifold sampling scheme [9] summarized earlier in the paper, such that ν×N× nNMC = 5×106.
Conditional expectations and conditional probabilities expressed in Equations (23) and (25) respectively, are
then estimated using these samples.

Figure (2) shows the marginal PDFs for resolution d/8 as the size N of the training set is increased
monotonically over the set (50, 100, 200, 500, 1053). The vertical marker in Figure (2)-(a) indicates the
lower bound on the value of φburn as specified subsequently for design optimization. The vertical markers in
Figures (2b) and (2-c) indicate the upper bounds on Pstagloss and maxPrms, respectively. The vertical bar in
Figure (2-d) shows the range of the computed objective function specified in the optimization problem. This
is further explained in the next section. The apparent convergence of these PDFs as N increases suggests that
the probability measure is eventually supported by the manifold, with the projection inducing only a small
discrepancy. Figures (3) and (4) show similar results for spatial resolutions of d/16 and d/32, respectively.
It is noted that there are clear differences between the PDFs at different spatial resolutions. This indicates
that further mesh refinement, beyond d/32, is necessary to arrive at a fully converged mesh solution. Some
of these PDFs, for instance, exhibit bimodal behavior, symmetry, or skewness at one resolution but not at
the others.

Figure (5-a) shows a scatter plot of the 2nd and 4th diffusion coordinates, synthesized for 3 samples
each of size N=20 for the d/32 case. Figure (5-b) shows a similar plot for the 3rd and 4th coordinates.
We note the stability of the geometric structure under statistical perturbations of the underlying dataset.
Similar stability is observed for other coordinates at N=20, but they do not exhibit a recognizeable geometric
structure. The diffusion coordinate were not stable for values of N smaller than 20, although the optimal
solutions (discussed in the following section) were not sensitive to these statistical perturbations.

4. Optimization Problem of Scramjet with Uncertainty

Our objective is to maximize the combustion efficiency ηcomb, subject to constraints on the burned
equivalence ratio φburn, the stagnation pressure loss across the combustor Pstagloss, and the maximum pressure
RMS maxPrms. These QoIs, which we denote by Qi, are shown in Table (4) together with their respective
ranges.

The five control variables, denoted by wi, used to attain the target design are shown in Table (5) together
with the respective feasible ranges. We also denote by P(E | Q2) the probability of event E conditional on
Q2 associated with the current iteration in the optimization process. We reinterpret the bounds on the QoIs,
shown in Table (4) to be chance constraints to be satisfied with a specified probability greater than 1−α,
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(a) Burned equivalence ratio, d/8, φburn (b) Stagnation pressure loss, d/8, Pstagloss

(c) Maximum RMS Pressure, d/8, maxPrms (d) Combustion efficiency, d/8, ηcomb

Figure 2: Probability density functions of four quantities of interest for resolution d/8. Each figure shows results for a range
of values of N , the training-set size. Vertical markers indicate lower bound for optimization in subfigure a) , upper bounds
in subfigures b) and c) (Table (4)); vertical marker in subfigure d) shows computed range of optimal objective function as N
varies.
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(a) Burned equivalence ratio, d/16, φburn (b) Stagnation pressure Loss, d/16, Pstagloss

(c) Maximum RMS Pressure, d/16, maxPrms (d) Combustion efficiency, d/16,ηcomb

Figure 3: Probability density functions of four quantities of interest for resolution d/16. Each figure shows results for a range
of values of N , the training-set size. Vertical markers indicate lower bound for optimization in subfigure a) , upper bounds
in subfigures b) and c) (Table (4)); vertical marker in subfigure d) shows computed range of optimal objective function as N
varies.
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(a) Burned equivalence ratio, d/32, φburn (b) Stagnation pressure loss, d/32, Pstagloss

(c) Maximum RMS Pressure, d/32, maxPrms (d) Combustion efficiency, d/32, ηcomb

Figure 4: Probability density functions of four quantities of interest for resolution d/32. Each figure shows results for a range
of values of N , the training-set size. Vertical markers indicate lower bound for optimization in subfigure a) , upper bounds
in subfigures b) and c) (Table (4)); vertical marker in subfigure d) shows computed range of optimal objective function as N
varies.
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Figure 5: Scatter plot for second and fourth (a) and third and fourth (b) diffusion coordinates obtained for three samples each
of size N=20.

and replace these bounds with the following equations,

P {Q1(w) > L1 | Q2 } > 1− α (27a)

P {Q3(w) < U3 | Q2 } > 1− α (27b)

P {Q4(w) < U4 | Q2 } > 1− α (27c)

We are thus dealing with the following optimization problem:

wopt = arg max
w∈Cw⊂R5

J(w) (28a)

subject to ci < 0 i = 1, 2, 3 (28b)

where the objective function is given by the following expectation,

J(w) = E [Q2] , (29)

the feasible domain, Cw, is the 5-dimensional cube specified by the following ranges,

w1 ∈ [0.5, 1]
w2 ∈ [0.25, 0.35]
w3 ∈ [0.231, 0.2564]
w4 ∈ [0.40755, 0.43295]
w5 ∈ [5, 25]

(30)

and the constraints are specified as

c1(wopt) = 1− α− P
{
Q1(wopt) > L1

∣∣ Q2

}
(31a)

c2(wopt) = 1− α− P
{
Q3(wopt) < U3

∣∣ Q2

}
(31b)

c3(wopt) = 1− α− P
{
Q4(wopt) < U4

∣∣ Q2

}
(31c)

The optimization problem is formulated and solved for each of the cases shown in Table (3). It is noted from
Figures (2)-(4) that for d/16, the lower bound on φburn and the upper bound on Pstagloss are both in the
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tail area, with a small likelihood of being satisfied. For d/8 and d/32, on the other hand, the bounds are
situated centrally within the support of the distribution.

To solve this non-convex constrained optimization problem we rely on GA [32], a genetic algorithm
package within the R language [33]. We set the population size within each generation to 50, and the
maximum number of iterations to 1000. We also set the number of unchanged iterations at convergence to
100. The probability of mutation in a parent chromosome and the number of best fitness individuals to survive
at each generation (elitism) are set to 0.8 and 2.5, respectively. Finally the number of consecutive generations
without improvement that characterizes the optimal solution is set to 100. In all the results shown below,
an optimal solution was attained without activating a stopping criterion based on the maximum number of
iterations (set to 1000). The optimization problem was solved on multicore CPUs taking advantage of the
multicore feature of GA.

Following a first set of GA optimization runs using a randomly selected initial population, a second set of
GA runs was performed on all cases in Table (3) using all the results from the first set as an initial population
for all cases. This was done in order to test whether a unique optimal solution exists across all resolutions,
which was not the case. Figure (6) shows the values of the optimal solutions as evaluated by the genetic
optimization algorithm. Each of the 5 subfigures there shows the values of one of the 5 control variables.
Within each subfigure, the red circles indicate solutions associated with d/32 resolution, the green squares
show solutions for the d/16 resolution, and the blue losanges correspond to the d/8 resolution. Within
each resolution, results are shown for all the values of N (size of initial training set) indicated in Table (3).
We note immediately that in most cases, the optimal values of the control variables are evaluated in the
neighborhood of their bounds. This is indicative that the attained optimal solutions are efficient relative to
the constraints.

The vertical markers in Figures (2(d)-4(d)) indicate the range of the objective function E(ηcomb) at the
optimal solution. This range corresponds to the various values of N . It is noted that, while the optimal
value of the objective function is robust to changes in N for both the d/8 and d/32 resolutions, it is very
sensitive toN for the d/16 resolution; this in spite of the seemingly converged behavior of the marginal density
functions, as function of N , in Figure (3(d)). It is clear from the foregoing observations that performance and
convergence criteria based on marginal density functions may be misleading when exploring high-dimensional
problems. In general, the conditional expectations used in the optimization problem probe higher order joint
density functions of the QoI and the control variables. The accurate estimation of these requires significantly
larger number of samples, which is facilitated by the manifold sampling approach used in the present paper.

5. Conclusion

The paper presents the application of a recent machine learning algorithm to a very large scale LES-based
optimization problem associated with scramjet combustion. The approach used relies on learning a joint
statistical model of the observables which include QoIs, input parameters (including design parameters), as
well as other observables. The scatter is construed to occur around an intrinsic structure to this dataset that
relates its components. The variance of this scatter around this structure is much smaller than in ambiant
space, and can thus be explained with a smaller dataset. The combination of diffusion maps, Itô sampling,
and non-parametric statistics come together in developing efficient algorithms that encapsulate these ideas.

Three different LES spatial resolutions are explored, each with a different number of samples in the
associated training set. Good convergence of the optimal solution is observed as function of the size of
the training set, although the optimal solutions are different for each of the three resolutions. It is noted
that while the optimal solution in each of the three cases tends to occur at a corner of the feasible domain
(i.e. several design variables lie along their respective lower or upper bound), the specific corner depends on
the specific spatial resolution. This highlights some of the challenges facing multi-fidelity/multi-resoution
optimization strategies.

6. Acknowledgment

Support for this research was provided by the Defense Advanced Research Projects Agency (DARPA)
program on Enabling Quantification of Uncertainty in Physical Systems (EQUiPS). This research used
resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of

14



● ● ● ● ● ● ●0.5

0.6

0.7

0.8

0.9

1.0

10 14 18 23 100 222 100 500
12 16 20 50 150 50 200 1053

Size of Training Set

φ G

● d/32
d/16
d/8

(a) Equivalence ratio, φG

● ●

●

●

● ●

●

0.26

0.28

0.30

0.32

0.34

10 14 18 23 100 222 100 500
12 16 20 50 150 50 200 1053

Size of Training Set

φ R

● d/32
d/16
d/8

(b) Relative equivalence ratio, φR

●

●

●

● ● ● ●

0.230

0.235

0.240

0.245

0.250

0.255

10 14 18 23 100 222 100 500
12 16 20 50 150 50 200 1053

Size of Training Set

x 1

● d/32
d/16
d/8

(c) Coordinate of primary injector, x1

● ●

●
●

●

●

●

0.410

0.415

0.420

0.425

0.430

10 14 18 23 100 222 100 500
12 16 20 50 150 50 200 1053

Size of Training Set

x 2

● d/32
d/16
d/8

(d) Coordinate of secondary injector, x2

●

●

●
●

● ● ●5

10

15

20

25

10 14 18 23 100 222 100 500
12 16 20 50 150 50 200 1053

Size of Training Set

θ 1

● d/32
d/16
d/8

(e) Angle of primary injector, θ1

Figure 6: Optimal values of the five control parameters for d/8, d/16, and d/32 resolutions and different sizes of training set.

15



Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. Computation
for this work was also supported by the University of Southern California’s Center for High-Performance
Computing (hpc.usc.edu). Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the
U.S. Department Of Energy or the United States Government.

7. References

References

[1] R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.

[2] C. Soize, R. Ghanem, Physical systems with random uncertainties: Chaos representations with arbitrary
probability measure, SIAM Journal of Scientific Computing 26 (2) (2004) 395–410.

[3] M. Eldred, Design under uncertainty employing stochastic expansion methods, International Journal
for Uncertainty Quantification 1 (2) (2011) 119–146.

[4] R. Ghanem, C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function
evaluations, International Journal for Numerical Methods in Engineering Published on line 2017 (2017).
doi:10.1002/nme.5632.

[5] R. Ghanem, C. Soize, C.-R. Thimmisetty, Optimal well-placement using a probabilistic learning, Data-
Enabled Discovery and Applications 2 (1) (2018) 1–16. doi:10.1007/s41688-017-0014-x.

[6] C. Soize, Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computa-
tional Engineering, Springer, New York, 2017. doi:10.1007/978-3-319-54339-0.

[7] R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, S. Zucker, Geometric diffusions as
a tool for harmonic analysis and structure definition of data: Diffusion maps, PNAS 102 (21) (2005)
7426–7431.

[8] C. Soize, Polynomial chaos expansion of a multimodal random vector, SIAM/ASA Journal on Uncer-
tainty Quantification 3 (1) (2015) 34–60. doi:10.1137/140968495.

[9] C. Soize, R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of
Computational Physics 321 (2016) 242–258. doi:10.1016/j.jcp.2016.05.044.

[10] D. J. Dolvin, Hypersonic International Flight Research and Experimentation (HIFiRE), in: 15th AIAA
International Space Planes and Hypersonic Systems and Technologies Conference, no. 2008-2581, Day-
ton, OH, 2008. doi:10.2514/6.2008-2581.

[11] D. J. Dolvin, Hypersonic International Flight Research and Experimentation, in: 16th
AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference,
no. 2009-7228, Bremen, Germany, 2009. doi:10.2514/6.2009-7228.

[12] K. R. Jackson, M. R. Gruber, T. F. Barhorst, The HIFiRE Flight 2 Experiment: An Overview and
Status Update, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. 2009-
5029, Denver, CO, 2009. doi:10.2514/6.2009-5029.

[13] K. R. Jackson, M. R. Gruber, S. Buccellato, HIFiRE Flight 2 Overview and Status Update 2011, in: 17th
AIAA International Space Planes and Hypersonic Systems and Technologies Conference, no. 2011-2202,
San Francisco, CA, 2011. doi:10.2514/6.2011-2202.

[14] N. E. Hass, K. F. Cabell, A. M. Storch, HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test
Results from the NASA Langley Arc-Heated Scramjet Test Facility, Tech. rep., NASA (2010).

16



[15] A. M. Storch, M. Bynum, J. Liu, M. Gruber, Combustor Operability and Performance Verification for
HIFiRE Flight 2, in: 17th AIAA International Space Planes and Hypersonic Systems and Technologies
Conference, no. 2011-2249, San Francisco, CA, 2011. doi:10.2514/6.2011-2249.

[16] K. F. Cabell, N. E. Hass, A. M. Storch, M. Gruber, HIFiRE Direct-Connect Rig (HDCR) Phase I
Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility, in: 17th AIAA
International Space Planes and Hypersonic Systems and Technologies Conference, no. 2011-2248, San
Francisco, CA, 2011. doi:10.2514/6.2011-2248.

[17] G. L. Pellett, S. N. Vaden, L. G. Wilson, Opposed Jet Burner Extinction Limits: Simple Mixed Hy-
drocarbon Scramjet Fuels vs Air, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit, no. 2007-5664, Cincinnati, OH, 2007. doi:10.2514/6.2007-5664.

[18] T. Lu, C. K. Law, A directed relation graph method for mechanism reduction, Proceedings of the
Combustion Institute 30 (1) (2005) 1333–1341. doi:10.1016/j.proci.2004.08.145.

[19] A. C. Zambon, H. K. Chelliah, Explicit reduced reaction models for ignition, flame propagation,
and extinction of C2H4/CH4/H2 and air systems, Combustion and Flame 150 (1-2) (2007) 71–91.
doi:10.1016/j.combustflame.2007.03.003.

[20] J. C. Oefelein, Large eddy simulation of turbulent combustion processes in propulsion and power systems,
Progress in Aerospace Sciences 42 (1) (2006) 2–37. doi:10.1016/j.paerosci.2006.02.001.

[21] G. Lacaze, A. Misdariis, A. Ruiz, J. C. Oefelein, Analysis of high-pressure Diesel fuel injection processes
using LES with real-fluid thermodynamics and transport, Proceedings of the Combustion Institute 35 (2)
(2015) 1603–1611. doi:10.1016/j.proci.2014.06.072.

[22] G. Lacaze, Z. P. Vane, J. C. Oefelein, Large Eddy Simulation of the HIFiRE Direct Connect Rig
Scramjet Combustor, in: 55th AIAA Aerospace Sciences Meeting, no. 2017-0142, Grapevine, TX, 2017.
doi:10.2514/6.2017-0142.

[23] M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics
of Fluids 3 (7) (1991) 1760–1765.

[24] B. Vreman, B. Geurts, H. Kuerten, On the formulation of the dynamic mixed subgrid-scale model,
Physics of Fluids 6 (12) (1994) 4057–4059.

[25] M. R. Gruber, K. Jackson, J. Liu, Hydrocarbon-Fueled Scramjet Combustor Flowpath Development for
Mach 6-8 HIFiRE Flight Experiments, Tech. rep., AFRL (2008).

[26] R. Coifman, S. Lafon, Diffusion maps, applied and computational harmonic analysis, Applied and
Computational Harmonic Analysis 21 (1) (2006) 5–30.

[27] R. Coifman, I. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, Diffusion maps, reduction coordinates, and
low dimensional representation of stochastic systems, SIAM J. Multiscale Model. Simul. 7 (2) (2008)
842–864.

[28] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural
Cmoputation 15 (2003) 1373–1396.

[29] C. Soize, R. G. Ghanem, C. Safta, X. Huan, Z. P. Vane, J. C. Oefelein, G. Lacaze, H. N. Najm,
Q. Tang, X. Chen, Entropy-based closure for probabilistic learning on manifolds, Journal of Computa-
tional Physics 388 (2019) 528–533. doi:10.1016/j.jcp.2018.12.029.

[30] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd Edition, John
Wiley and Sons, New York, 2015.

[31] K. Burrage, I. Lenane, G. Lythe, Numerical methods for second-order stochastic differential equations,
SIAM Journal on Scientific Computing 29 (1) (2007) 245–264.

17



[32] L. Scrucca, GA: A package for genetic algorithms in R, Journal of Statistical Software 53 (4) (2013)
1–37.

[33] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria (2018).
URL https://www.R-project.org/

18


