Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates - Archive ouverte HAL
Article Dans Une Revue Communications in Nonlinear Science and Numerical Simulation Année : 2020

Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

Résumé

In this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach.
Fichier principal
Vignette du fichier
Submission_PML.pdf (2.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02340832 , version 1 (31-10-2019)

Identifiants

Citer

Xavier Antoine, Christophe Geuzaine, Qinglin Tang. Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, pp.105406. ⟨10.1016/j.cnsns.2020.105406⟩. ⟨hal-02340832⟩
105 Consultations
236 Téléchargements

Altmetric

Partager

More