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Abstract

In this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach
in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations.
The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or
FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for
linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning
parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by
using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations
illustrating the strength of the proposed approach.
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1. Introduction

Since its first experimental creation in 1995 [3, 26, 34], the Bose-Einstein condensation (BEC) phenomena
provides an incredible glimpse into the macroscopic quantum world and has opened a new era in atomic and
molecular physics as well as in condensed matter physics. It has been extensively studied both experimentally
and theoretically, and is still a very active research topic [1, 2, 17, 25, 33, 38, 40, 43, 44, 45, 49, 50]. At
temperatures T much smaller than the critical temperature Tc, the properties of a rotating BEC are well
described by a macroscopic complex-valued wave function ψ(x, t) whose evolution is governed by the three-
dimensional (3D) Gross-Pitaevskii equation (GPE). Solving the d-dimensional (d = 2 or 3) dimensionless
GPE with a rotation term [11, 14] leads to the following boundary-value problem: for a given initial state
ψ0, find the complex-valued wave function ψ(x, t) solution to

i∂tψ(x, t) =

[
−1

2
∇2 + V (x, t)− ωLz + β|ψ|2

]
ψ(x, t),

ψ(x, t = 0) = ψ0(x), x ∈ Rd, t ≥ 0,
(1.1)

where x := (x, y, z) (:= (x, y) in 2D) and t are the space and time variables, respectively. Denoting by ∇ the
gradient operator, ∇2 is then the laplacian operator, and V (x, t) is a real-valued function corresponding to
the potential. The real-valued constants β and ω respectively represent the nonlinear interaction strength
and the rotating frequency. In addition, Lz = i(y∂x − x∂y) is the z-component of the angular momentum
[11, 14]. When ω = 0, the GPE is also often called the nonlinear cubic Schrödinger equation. Let us remark
that many more complex models involving GPEs are widely used in the literature [11, 14], including in
particular nonlocal dipolar interactions or multi-components gases.

When computing the dynamics of the rotating GPE, one can use various stable and efficient schemes
that are known to also respect some dynamical properties (mass/energy conservation, time invariance,
dispersion relation, time reversibility,...). Here, we do not want to review all the possible methods and
we rather focus on two widely used time discretization schemes, i.e. the (Strang) time-splitting [15] and
relaxation [24] methods which are second-order accurate in time. We refer to [5, 11, 14] for more details
about the most popular schemes and their properties. When computing fast rotating BEC through the
GPE, quantized vorticity takes place and then highly accurate spatial discretization schemes are required
to capture the dynamics of the small quantum defects. Among the available numerical methods, the most
standard way [5, 11, 14] is to use FFT-based pseudospectral approximation schemes in cartesian coordinates.
Indeed, such approximations are easy to implement, efficient and highly accurate [9, 10, 11]. In particular,
they can be trivially included into time-splitting schemes by a direct integration in the Fourier domain.
The implementation work for the relaxation scheme is a bit more involved, but it remains quite simple
as it relies on well-known computational bricks (i.e. FFTs, Krylov subspace solvers and simple matrix-free
preconditioners). We also consider in this paper the (linear) finite element method for comparison, which is
nevertheless only second-order in space (but higher order polynomials could also be used).

In some situations arising in BECs (as well as in many situations related to the nonlinear Schrödinger
equation, e.g. in quantum optics or nonlinear wave propagation), the condensate expands. This can be
the case for example when a BEC is created and then the confining potential is no longer active. In other
situations related to the nonlinear Schrödinger equation, considering that the wave function propagates
out of the a priori fixed computational domain is very standard. In these cases, one needs to use a very
large computational box, leading then to extensive computational costs and memory storage limitations.
An alternative approach consists in considering a fixed box and then setting suitable boundary conditions
at the domain interface. According to their mathematical properties, such boundary conditions are called
transparent, artificial or absorbing boundary conditions (see [4, 12] for some recent reviews in quantum and
relativistic mechanics). While being now widely used in practice, their implementation in a finite-difference
or finite element scheme is far from being trivial. In addition, considering such boundary conditions in
a FFT-based pseudospectral approximation scheme is not possible since periodic boundary conditions are
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already imposed at the domain boundary. An alternative is to use Perfectly Matched Layers (PMLs) as
introduced in computational electromagnetism by Bérenger [19, 20, 21, 48, 55]. This method is now widely
used in many areas of computational physics and engineering [6, 18, 22, 23, 27, 29, 30, 31, 41, 42, 54, 55, 57]
since it is easy to implement and accurate. Concerning the application of the PML method to linear and
nonlinear Schrödinger-type equations, we refer to [4, 7, 12, 28, 35, 37, 47, 53, 58] where various developments
are available in the framework of the finite-difference/finite element methods. (Let us remark that the PML
method is different from the exterior complex scaling methods [32, 46, 53, 56].) To the best of the authors’
knowledge, there is no contribution until now related to the application of PMLs in the context of FFT-based
methods, for both the time-splitting and relaxation schemes applied to Schrödinger equations and GPEs.
The aim of this paper is to address this question, to show that this can be done without great effort and
that the resulting scheme is indeed numerically efficient, accurate and that the reflection at the boundary
is relatively small.

The paper is organized as follows. In Section 2, we introduce the PML formulation in cartesian coor-
dinates for the GPE without rotating term, which means that ω = 0 in system (1.1). We introduce some
notations and give six types of PML absorbing functions that will be tested later. In Section 3, we consider
first the time discretization of the PML formulation of the GPE based on the Strang splitting scheme as well
as relaxation scheme. Then, we detail how to discretize the formulation in space, first by a finite element
method but most importantly next by an FFT-based pseudospectral approximation scheme. In Section 4, we
develop a thorough numerical study of the approximation schemes and in particular we focus on the choice
of the PML absorbing function and its tuning parameters in the case of the highly accurate pseudospectral
schemes. The direct extension to the rotating GPE is non trivial as it is explained in Section 5, since a
gradient term is involved into the GPE arising in system (1.1). We then propose a relatively simple solution
by considering an equivalent formulation in rotating Lagrangian coordinates which allows to extend the pre-
vious PML framework with pseudospectral approximation to the rotating case. Some numerical simulations
illustrate the efficiency and accuracy of the method. Finally, we conclude in Section 6.

2. PMLs formulation in cartesian coordinates for the GPE without rotation (ω = 0)

Let us assume that the initial profile ψ0 is compactly supported into a bounded domain of physical
interest DPhy with boundary ΓPhy := ∂DPhy . To solve the GPE (1.1), we consider now that the equation
is set in the truncated domain DPhy

i∂tψ(x, t) =

[
−1

2
∇2 + V (x, t)− ωLz + β|ψ|2

]
ψ(x, t), x ∈ DPhy. (2.1)

Therefore, to get a complete initial boundary value problem, additional boundary conditions (BCs) are
required at the domain boundary ΓPhy := ∂DPhy. Most particularly, when the potential V (x, t) is not
trapping, then outgoing waves may emerge and thus suitable BCs are needed to be reflection-less or non-
reflecting [4, 12]. Our analysis starts in this Section with the non-rotating GPE (ω = 0), the extension to
the rotating case will be next studied in Section 5.

Let us first introduce the concept of PML [4, 12] by considering the toy model for the 1D linear
Schrödinger equation, i.e.

i∂tψ(ν, t) = −1

2
∂2
xψ(ν, t), ν ∈ R. (2.2)

We assume that DPhy := [−L∗ν , L∗ν ] and consider the right traveling outgoing waves only. The PML technique
can be carried out by stretching the real coordinate into the complex plane [58]:

ν̃ = ν + eiϑν
∫ ν

L∗
ν

σ(s)ds, σ(s) ≡ 0 if s < L∗ν . (2.3)

Here, ϑν ∈ (0, π2 ) is a real constant and σ(s) is a real-valued function called absorbing function. Plugging
(2.3) into (2.2), we obtain the corresponding PML equation

i∂tψ(ν, t) +
1

2S(ν)
∂ν

(
1

S(ν)
∂νψ(ν, t)

)
= 0, ν ∈ R, (2.4)
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where S(ν) = 1 + eiϑνσ(ν). Constant ϑν and function σ(ν) are chosen such that ψ is damped and decays
fast enough in ν ∈ [L∗ν ,+∞). Hence, it suffices to truncate the semi-infinite interval [L∗ν ,+∞) as a finite
right PML region [L∗ν , Lν ] and to impose a homogeneous Dirichlet or periodic BC on ψ at ν = Lν . A similar
treatment can be applied to the left semi-infinite interval (−∞,−L∗ν ]. Denote the computational domain as
D := DPhy∪DPML := [−Lν , Lν ], with DPML := [−Lν ,−L∗ν ]∪ [L∗ν , Lν ], and set Γ := ∂D := {−Lν , Lν}. Then,
the Schrödinger equation (2.2) can be approximated by the following PML equation within the domain D:

i∂tψ(ν, t) +
1

2S(ν)
∂ν

(
1

S(ν)
∂νψ(ν, t)

)
= 0, ν ∈ D, (2.5)

ψ(ν, t) = 0, ν = ±Lν , or ψ(−Lν , t) = ψ(Lν , t), t > 0, (2.6)

with

S(ν) =

{
1, |ν| < L∗ν ,

1 + eiϑνσ(|ν| − Lν), L∗ν ≤ |ν| < Lν .
(2.7)

Here, ϑν is a given constant which is fixed as ϑν = π
4 [7, 58] hereafter, and σ(ν) is a given absorbing

function. In this paper, we consider the following six types of absorbing functions which are well studied
and successfully applied e.g. to scattering problems [22, 23]

Type 1 : σ0 (ν + δν)2, Type 3 : − σ0/ν, Type 5 : − σ0/ν − σ0/δν ,

Type 2 : σ0 (ν + δν)3, Type 4 : σ0/ν
2, Type 6 : σ0/ν

2 − σ0/δ
2
ν ,

(2.8)

with δν = Lν − L∗ν being the thickness of the PML layer. Notice that S(ν) is discontinuous at the interface
ν = L∗ν if the Type 3 or Type 4 absorbing functions are chosen. We are going to compare these six types
of absorbing functions and find the (range of) optimal absorbing strength σopt

0 for each type of profile with
different thickness δν and discretization schemes for the full GPE.

Let us derive the PML equation of the GPE (2.1) with ω = 0 in Cartesian coordinates. Here, we only
show the 2D case, the extension to the 3D case is straightforward and is omitted for brevity. Without loss
of generality, we assume that the computational domain of interest is a rectangle, i.e., DPhy = [−L∗x, L∗x]×
[−L∗y, L∗y]. Analogous to the derivation of (2.5), placing a PML region DPML =: [−Lx, Lx]× [−Ly, Ly]\DPhy

surrounding DPhy, stretching the coordinates in both the x- and y-directions, i.e., taking the following
substitutions

∂x −→
∂x

Sx(x)
, ∂y −→

∂y
Sy(y)

, (2.9)

we obtain the PML equation for the non-rotating GPE (2.1) in the computational domain D := [−Lx, Lx]×
[−Ly, Ly] = DPhy ∪ DPML:

i∂tψ = −1

2

[
1

Sx(x)
∂x

(
1

Sx(x)
∂x

)
+

1

Sy(y)
∂y

(
1

Sy(y)
∂y

)]
ψ +

(
V + β|ψ|2

)
ψ, x ∈ D, t ≥ 0. (2.10)

The homogeneous Dirichlet or periodic BCs can then be applied at the boundary Γ := ∂D. To simplify the
presentation, hereafter, we let Sν(ν) = S(ν) (ν = x, y), with S(ν) reading as (2.7) and denote the linear
differential operator in (2.10) as

L = −1

2

[
1

Sx(x)
∂x

(
1

Sx(x)
∂x

)
+

1

Sy(y)
∂y

(
1

Sy(y)
∂y

)]
. (2.11)

3. Discretization (ω = 0)

In this section, we propose different approaches to discretize equation (2.10). To this end, we choose
∆t > 0 as the time step size and denote the time steps by tn = n∆t, for n ≥ 0.
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3.1. Time discretization

A first well-known approach to deal with the nonlinearity in the GPE (2.10) is to apply the time-splitting
technique [5, 14, 15], i.e., one solves

i ∂tψ(x, t) = Lψ(x, t), x ∈ D, tn ≤ t ≤ tn+1, (3.1)

for the time step of length ∆t, followed by solving

i ∂tψ(x, t) =
[
V (x, t) + β |ψ(x, t)|2

]
ψ(x, t), x ∈ D, tn ≤ t ≤ tn+1, (3.2)

for the same time step. Equation (3.1) will be further discretized in the next subsection. For t ∈ [tn, tn+1],
Eq. (3.2) leaves the density |ψ(x, t)|2 invariant, i.e., |ψ(x, t)|2 = |ψ(x, tn)|2 := |ψn(x)|2. Therefore, (3.2)
collapses to be a linear ODE, which can be integrated analytically as

ψ(x, t) = e−i[V(x,tn,t)+β |ψn(x)|2(t−tn)]ψ(x, tn), x ∈ D, t ∈ [tn, tn+1].

Here, for any a, b ∈ R, function V(x, a, b) reads

V(x, a, b) =:

∫ b

a

V (x, τ)dτ.

Another popular approach is to use the relaxation technique introduced by Besse in [24]

iδ+
t ψ

n = Lψn+ 1
2 + (V n+ 1

2 + ϕn+ 1
2 )ψn+ 1

2 , in D, (3.3)

with ϕn+ 1
2 = 2β|ψn|2 − ϕn−

1
2 , for n ≥ 0. Here, we set: ϕ−

1
2 = β|ψ0(x)|2, ψn(x) = ψ(x, tn), δ+

t ψ
n =

(ψn+1 − ψn)/∆t and fn+ 1
2 = (fn+1 + fn)/2 (f = V and ψ). The relaxation scheme owns the important

property that the resulting equation (3.3) is linear and therefore does not need any nonlinear solver unlike
the standard Crank-Nicolson scheme, which greatly reduces the computational time and memory cost.

3.2. Space discretization

We now introduce two approaches to further discretize the equations (3.1)-(3.3) in space. The first one is
based on the Finite Element Method (FEM) [36] while the other uses a Fourier Pseudospectral (FP) scheme
[5, 14].

Let us start with the FEM. To this end, we simply impose homogeneous Dirichlet BCs for (2.10) at Γ,
and hence for Eqs. (3.1) & (3.3). The weak formulation for (3.1) reads as follows: find ψ(x, ·) ∈ H1

0 (D) such
that for ∀φ ∈ H1

0 (D), we have

i
d

dt

∫
D
ψ(x, t)φSxSydx =

1

2

∫
D
Q∇ψ(x, t) · ∇φdx. (3.4)

On the other hand, the weak formulation for (3.3) reads: find ψn+1 ∈ H1
0 (D) such that for ∀φ ∈ H1

0 (D)

i

∫
D
δ+
t ψ

nφSx Sydx =
1

2

∫
D
Q∇ψn+ 1

2 · ∇φdx +

∫
D

(
V n+ 1

2 + ϕn+ 1
2

)
ψn+ 1

2φSx Sy dx. (3.5)

In the above two equations, the 2× 2 diagonal tensor Q is defined as

Q = diag([Sy(Sx)−1, Sx(Sy)−1]).

To further discretize (3.4) and (3.5), we define Th as a family of partitions (e.g. triangulations or quadrangu-
lations) of the domain D with mesh size h, i.e. Dh := ∪T ∈ThT . The notation T designates an element of the
partition Th and Γh is the partition of the boundary Γ. Moreover, let Pk (k = 1 latter in the simulations)
be the space of polynomials with degree less or equal to k ≥ 1 and define the finite element spaces

V h =
{
ψh ∈ C0(D) |ψh|T ∈ Pk, ∀ T ∈ Th

}
, V h0 =

{
ψh ∈ V h |ψh|Γh = 0

}
. (3.6)
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The FEM approximation of (3.4) for the splitting scheme reads:

iAh
d

dt
ψh(t) = Bhψh(t), (3.7)

where ψh(t) is the nodal FEM vector and Ah and Bh are respectively the generalized mass and stiffness
matrices corresponding to the following bilinear forms: ∀(uh, vh) ∈ V h0 × V h0

(Ahuh, vh) =

∫
Dh

SxSyuhvhdx, (Bhuh, vh) =
1

2

∫
Dh

Q∇uh · ∇vhdx. (3.8)

The resulting system (3.7) is a linear ODE system, which can be further solved with a well-adapted high-
order time discrete scheme. In the present paper, we restrict ourselves to the standard Crank-Nicolson
scheme. Combined with (3.2), a fully discrete second-order Strang time-splitting FEM (TSFEM) scheme
reads:

ψ(1) = ψnh ∗ e
−i
(
V(tn,tn+∆t/2)+β∆t |ψnh |

2/2
)
, (3.9)(

i

∆t
Ah −

1

2
Bh
)
ψ(2) =

(
i

∆t
Ah +

1

2
Bh
)
ψ(1), (3.10)

ψn+1
h = ψ(2) ∗ e−i

(
V(tn+∆t/2,tn+1)+β∆t |ψ(2)|2/2

)
. (3.11)

Here, V(s, q) is the vector containing the elements V(x, s, q) for all x at the grid nodes and ∗ means the
component-by-component product of two complex-valued vectors. Let us remark that the second step of
the TSFEM algorithm can be mostly pre-computed once before entering into the time loop by considering
a LU factorization since Ah and Bh are (symmetrical) matrices that do not depend on n. Therefore, each
solution of the second time step only requires the computation of the forward/backward substitution which
has a linear cost with respect to the finite element space dimension. Finally, the extension to higher-order
TS schemes is direct.

As for (3.5), the FEM approximation leads to the following relaxation FEM (ReFEM) scheme(
i

∆t
Ah −

1

2
Bh −

1

2
Cnh
)
ψn+1
h =

(
i

∆t
Ah +

1

2
Bh +

1

2
Cnh
)
ψnh , (3.12)

where Cnh is the matrix related to the finite element approximation of the bilinear form: ∀(uh, vh) ∈ V h0 ×V h0

(Cnhuh, vh) =

∫
Dh

(
V n+ 1

2 + ϕn+ 1
2

)
SxSyuhvhdx. (3.13)

Let us remark that Cnh must be recomputed for each n, and the corresponding linear system must be rebuilt
and solved, which is finally computationally highly expensive.

The second spatial discretization scheme is based on the Fourier pseudospectral method. To this end,
periodic BCs on the boundary Γ must be imposed for equation (2.10), and hence to both (3.1) and (3.3).

Let L and M be two even integer numbers. We define hx = 2Lx
L and hy =

2Ly
M as the mesh sizes in the x-

and y-directions, respectively. To simplify the notations, we introduce the indices and grid points sets as
well as the basis functions as

TLM =
{

(`,m) ∈ N2 | 0 ≤ ` ≤ L, 0 ≤ m ≤M
}
,

T̃LM =
{

(p, q) ∈ Z2 | − L/2 ≤ p ≤ L/2− 1, −M/2 ≤ q ≤M/2− 1
}
,

Gxy = {(x`, ym) =: (−Lx + ` hx,−Ly +mhy), (`,m) ∈ TLM} ,
Wpq(x) = eiµ

x
p(x+Lx) eiµ

y
q (y+Ly), µxp = πp/Lx, µ

y
q = πq/Ly, (p, q) ∈ T̃LM .
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Let fn`m (f = ψ, ϕ, V , Sx, Sy ) be the approximation of f(x`, ym, tn) for (`,m) ∈ TLM and n ≥ 0. We
denote by fn (f = ψ, ϕ, V, Sx, Sy,) as the vector with components {fn`m, (`,m) ∈ TLM}. The Fourier
pseudospectral discretization of a function ψ is given by

ψ(x, y, t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

ψ̂pq(t)Wpq(x, y), (3.14)

where the Fourier coefficients ψ̂pq(t) read as

ψ̂pq(t) =
1

LM

L−1∑
j=0

M−1∑
k=0

ψ`m(t)e−iµ
x
p(x`+Lx)e−iµ

y
q (ym+Ly). (3.15)

Hence, the Fourier pseudospectral discretizations of ∂xψ and ∂yψ are respectively given by: for (`,m) ∈ TLM ,(
J∂xKψ

)
`m

(t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

iµxp ψ̂pq(t)Wpq(x`, ym), (3.16)

(
J∂yKψ

)
`m

(t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

iµyq ψ̂pq(t)Wpq(x`, ym). (3.17)

Furthermore, we define the operators JLK, S−1
x , S−1

y , Vn+ 1
2 and Jϕn+ 1

2 K as follows

JLK = −1

2

(
S−1
x J∂xK

(
S−1
x J∂xK

)
+ S−1

y J∂yK
(
S−1
y J∂yK

))
, (3.18)(

S−1
x ψ

)
`m

= ψ`m/S
x
`m,

(
Vn+ 1

2ψ
)
`m

=
1

2

(
V n`m + V n+1

`m

)
ψ`m, (3.19)(

S−1
y Ψ

)
`m

= ψ`m/S
y
`m,

(
Jϕn+ 1

2 Kψ
)
`m

=
1

2

(
ϕn+1
`m + ϕn`m

)
ψ`m. (3.20)

The first scheme brings together the time-splitting and spectral methods, e.g. a second-order Time-Splitting
Fourier Pseudospectral method (TSFP) as follows: for (`,m) ∈ TLM

ψ(1) = ψn ∗ e−i
(
V(tn,tn+∆t/2)+β∆t |ψnLM |

2/2
)
, (3.21)[

i
I

∆t
− 1

2
JLK
]
ψ(2) =

[
i
I

∆t
+

1

2
JLK
]
ψ(1), (3.22)

ψn+1 = ψ(2) ∗ e−i
(
V(tn+∆t/2,tn+1)+β∆t |ψ(2)|2/2

)
. (3.23)

Here V`m(t1, t2) = V(x`, ym, t1, t2), (̂ψnLM )pq and (̂ψ(2))pq are the discrete Fourier series coefficients of the

vectors ψnLM and ψ(2), respectively.
The second scheme brings together the relaxation technique and spectral method, i.e. the relaxation

Fourier Pseudo-spectral methods (ReFP) reads:[
i
I

∆t
− 1

2
JLK− 1

2
Vn+ 1

2 − 1

2
Jϕn+ 1

2 K
]
ψn+1 =

[
i
I

∆t
+

1

2
JLK +

1

2
Vn+ 1

2 +
1

2
Jϕn+ 1

2 K
]
ψn. (3.24)

For solving the linear systems (3.22) and (3.24), a direct solution cannot be used since all the matrix
operators are related to variable coefficients PDEs, in particular because of the presence of the PML layer.
An alternative approach [8, 9, 10] consists in using a preconditioned Krylov subspace iteration solver. In
the present paper, we use the GMRES [51, 52], accelerated by suitable preconditioners [8, 9, 10], e.g.
(i I

∆t −
1
2JL0K)−1, where L0 is the laplacian operator (for σ = 0) in the extended domain D. This operator

can be trivially computed by FFT since it is a constant coefficients linear operator and can then serve as a
matrix-free preconditioner to (3.24).
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4. Numerical results (ω = 0)

In this section we first carry out, on a linear case, a detailed performance comparison of the TSFEM
(3.9)-(3.11), the ReFEM (3.12), the TSFP (3.21)-(3.23) and the ReFP (3.24) methods proposed in the
previous section. Then, we further compare the TSFP and ReFP via a nonlinear case. Finally, we apply
the TSFP method to simulate the dynamics of a ground states that released from its trapping potential.
To simplify the comparison, we only consider two-dimensional examples. The physical domain is fixed to
be a square centered at the origin i.e., DPhys = [−L,L]2. Moreover, the size of the PML domain and the
strength of the absorbing functions in the x- and y-directions are chosen to be identical, i.e., δx = δy = δ
and σx0 = σy0 = σ for some provided constants δ and σ. Hence, the computational domain is set to be
D = [−L− δ, L+ δ]2. Furthermore, for the FEM-based methods, the computational domain is partitioned
by uniform rectangles with mesh sizes hx and hy in the x- and y-directions, respectively. For all the four
methods, we choose hx = hy = h and denote ψnnum as the vector consisting of the numerical solution of
ψ(x, tn) on given grids that lie in the physical domain DPhys. Meanwhile, we denote by ψnref the reference
solution in DPhys. To quantized the error, we define the relative `∞ errors as:

erel
∞ (t = tn) =

‖ψnnum −ψnref‖∞
‖ψnref‖∞

, (4.1)

where ‖ · ‖∞ represents the standard `∞-norm on a vector space.

4.1. Linear case

Here, we consider a non-rotating linear case, i.e., we set β = ω = 0. Moreover, the potential V and
initial data ψ0 are chosen respectively as

V (x, t) = −8|x|2, ψ0(x) = e−8|x|2 . (4.2)

With these parameters, the linear Schrödinger equation admits the following exact solution which spreads
out as the time evolves

ψ(x, t) =
i

i− 4 tanh(4t)
exp

{
−8|x|2sech2(4t) + 34i|x|2 tanh(4t)

1 + 16 tanh2(4t)

}
. (4.3)

Unless stated otherwise, we fix L = 2 and ∆t = 10−4. In addition, the relative solution ψnref in (4.1) is taken
as the exact solution (4.3) at the grid points at time t = tn.

Example 4.1. We first compare the different kinds of absorbing functions and we determine the associated
optimal absorbing strength σ for each type, and for the four schemes: ReFEM,TSFEM, ReFP and TSFP.
To this end, we take h = 1

16 . Fig. 4.1 shows erel
∞ (0.24) for the six types of absorbing functions with PML

sizes δ = 0.25 and δ = 0.5. From the figures, we can see that: (i) For ReFEM and TSFEM, all the 6 types
absorbing functions are almost of the same quality. They have different “optimal” regions of σ, which are
simply a “shift” from each other. A similar conclusion can be made for both the ReFP and TSFP schemes.
(ii) For ReFEM and TSFEM, as δ increases, the relative error is saturated for all σ, which indicates that the
discretization error is reached (second-order accuracy in space of linear elements). For this case, it seems
better to use a PML of type 4 or 6 as δ gets larger since the range of σ parameters appears to be larger as
well. Meanwhile for ReFP and TSFP, the error still decays to its discretization error as δ increases, which
is much smaller than those in FEM-based schemes. (iii) ReFEM and TSFEM behave similarly for each
fixed absorbing function and parameter δ. This is similar for ReFP and TSFP with small δ. While for a
larger value of δ, ReFP is more accurate than TSFP. (iv) Although these four schemes have similar region
of “optimal” σ, Fourier spectral-based schemes outperform the FEM-based schemes in terms of accuracy
in the optimal region and are memory cheap since they are matrix-free. Let us remark that ReFEM needs
the reconstruction of the matrix of the linear system at each time step, which is quite time consuming
and therefore not as efficient as the TSFEM. The preconditioned solution of the linear systems is also very
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efficient through the preconditioned GMRES for the FP approaches. (v) For all the four schemes, the region
of optimal σ are approximately the same for the types 1 and 2, types 3 and 4 and types 5 and 6, respectively.
For types 1 and 2, larger values of σ are preferred while smaller values σ are better for types 5 and 6. We
recommend the use of intermediate values of σ for types 3 and 4. (vi) In terms of both accuracy and
efficiency, we conclude that ReFP and TSFP outperform ReFEM and TSFEM.
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Figure 4.1: erel∞ (0.24) in Example 4.1 for the schemes ReFEM,TSFEM, ReFP and TSFP (from left to right) with different
absorbing strengths σ and PML sizes δ.

Example 4.2. In this example, we take the same parameters as in Example 4.1. We further consider the
stability region at different times. Fig. 4.2 shows the corresponding results for types 2, 4, 6 for δ = 0.5
for various types of absorbing functions. From this figure and additional experiments not shown here for
brevity, we can see that: (i) For fixed h and δ, the stability of the optimal region for σ is not fundamentally
changed for different times. (ii) For other values of δ, the conclusion is similar. (iii) The results for types 1,
3, 5 is similar to types 2, 4, 6, respectively. (iv) ReFEM behaves the same as for TSFEM. TSFP is clearly
better than ReFEM and TSFEM, while ReFP has the best accuracy.

Example 4.3. We now consider different mesh sizes h with fixed time and PML sizes δ. From now on, since
the FP-based approaches are better than FEM-based schemes in terms of accuracy and efficiency, we only
consider the ReFP and TSFP methods. We fix the mesh size as h = 1

16 and varies the absorbing strength
σ and PML sizes δ. Fig. 4.3 shows erel

∞ (0.25) for ReFP and TSFP with the absorbing functions of types 2,
4, 6. From this figure and additional figures not shown here, we can see that: (i) As δ increases, the error
decreases for a fixed value of σ. (ii) The performance of types 1, 3 and 5 are the same as those of types
2, 4 and 6, respectively. (iii) Generally, the errors of types 2, 4 and 6 are smaller than those of types 1, 3
and 5, respectively. (iv) For both ReFP and TSFP, as δ changes, the optimal region of σ is shifted a lot for
the absorbing functions of types 1 and 2, while for the other four types, the stability region of σ does not
change significantly, especially when δ is large enough. For this reason and together with comment (ii), it is
preferable to use an absorbing function of type 4 or 6. Again, ReFP is more accurate than (but comparable
with) TSFP.
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Figure 4.2: erel∞ (t) at different times t and various absorbing strengths σ for the PML size δ = 0.5 in Example 4.2 for ReFEM,
TSFEM, ReFP and TSFP (from left to right) with absorbing functions of types 2, 4 and 6 (from top to bottom)

Example 4.4. Here, following the last example, we consider the error with respect to different mesh sizes
h. We fix the PML sizes δ = 0.25 and vary the mesh size h as well as the absorbing strength σ. Fig. 4.4
illustrates erel

∞ (0.25) for ReFP and TSFP with absorbing functions of types 2, 4, 6. From this figure and
additional figures not shown here, we can see that: (i) As h decreases, the error for the same parameter σ
usually decreases for both ReFP and TSFP. (ii) As h decreases, the stability region of σ enlarged significantly.
(iii) However, the error is saturating for a fixed thickness δ.

4.2. The nonlinear case

In this section, we apply the proposed methods to study the nonlinear Schrödinger equation, i.e., β 6= 0.
Recall that from the previous section the FFT-based schemes outperform the FEM-based methods and
absorbing functions of types 4 & 6 work better than other types for each method. Therefore, we only
consider the TSFP and ReFP methods with absorbing functions of types 4 & 6 in the following cases.

Example 4.5. We first compare the performance of TSFP and ReFP methods for a manufactured example.
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Figure 4.3: erel∞ (0.25) vs. σ for TSFP (top) and ReFP (bottom) with absorbing functions of types 2, 4, 6 for hx = hy = 1
16

and different PML sizes δ in Example 4.3.
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Figure 4.4: erel∞ (0.25) vs. σ for TSFP (top) and ReFP (bottom) for the absorbing function of types 2, 4, 6, with PML size
δ = 0.25, and for different mesh sizes hx = hy = h in Example 4.4.

To this end, we let β = −1. The trapping potential and initial data are chosen respectively as

V (x) = −1

2
sech2(x− t) sech2(y − t)

(
cosh(2(x− t)) + cosh(2(y − t))

)
, (4.4)

ψ0(x) = sech(x) sech(y)ei(x+y). (4.5)

With these parameters, the nonlinear Schrödinger equation admits an outgoing solitary solution which can

11



be solved analytically as
ψ(x, t) = sech(x− t) sech(y − t)ei(x+y). (4.6)

For both methods, we choose L = 32 and ∆t = 10−3. The reference solution ψnref in (4.1) is taken as the
exact solution (4.6) at the grid points at time t = tn. We fix the mesh size as h = 1

8 and vary the absorbing
strength σ as well as the size of the PML domain δ. Fig. 4.5 depicts erel

∞ (31) for the ReFP methods with
different PML sizes δ and absorbing functions. Fig. 4.6 shows the erel

∞ (t) at different times for both methods
with PML size δ = 2 and type 6 absorbing function. From these figures and other numerical experiments
not reported here for conciseness, we could see that: (i) The performance of the TSFP method is similar
as the one of ReFP. (ii) The performances of TSFP & ReFP are similar as for the linear cases shown in
the previous sections, i.e., the error decays as the PML size δ increases. However, the optimal region of
absorbing strength σ is different from the linear cases. (iii) Absorbing function of type 6 is more accurate
than the one of type 4 in the optimal region. Moreover, the optimal region of type 4 function will shift as
the PML size δ changes. Therefore, we suggest to use the absorbing function of type 6 for the practical
computations. (iv) For both types absorbing functions, usually ReFP is more accurate than TSFP (cf. fig.
4.6). However, due to the nonlinearity, the preconditioner of ReFP (3.24) needs to be rebuilt at each time
step, which thus is less efficient than for the TSFP (3.21)-(3.23) where the nonlinear part can be integrated
explicitly. (v) Now that the acuracy of TSFP is not far from ReFP, we suggest that the TSFP method is
used with the absorbing function of type 6 in practice.

10
-3

10
-1

10
1

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

Type 4

10
-3

10
-1

10
1

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

Type 6

Figure 4.5: erel∞ (31) for ReFP with different PML sizes δ and absorbing functions of type 4 & 6 in example 4.5.
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Figure 4.6: erel∞ (t) at different time t for ReFP and TSFP with PML sizes δ = 2 and type 6 absorbing functions in example 4.5
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Example 4.6. In this example, we apply the TSFP method to simulate the dynamics of the GPE with a
strong nonlinearity. To this end, we choose β = 500, ω = 0 and L = 16. First, we prepare the initial data
by computing the corresponding ground state of the GPE with trapping potential V (x) = |x|2/2. Then,
we release the ground states from the trap, i.e., we set V (x) ≡ 0 and simulate the dynamics using TSFP
methods. Under this set-up, the ground state is expected to extend and spreads out which would cause
problems wherever it is close to the computational domain if a PML technique is not applied. We fix the size
of the PML region, the mesh size and discretization time step respectively as δ = 2, h = 1/16, ∆t = 10−3.
The absorbing function is chosen as the Type 6 function with absorbing strength σ = 100. To compare, we
also report the results obtained by using TSFP without PML (i.e. set σ = 0). Fig. 4.7 shows the contour
plots of the density |ψ(x, t)|2 at different times for the TSFP method with and without PML techniques.
From the figure we can see that the waves are reflected back into the physical domain leading to a nonphysical
dynamics if no PML is imposed. In contrast, adding a PML region can absorb the outgoing waves well, and
the dynamics of the ground states in the physical domain can be well reproduced.

Figure 4.7: Contour plots of |ψ(x, t)|2 at different times for example 4.6 solved by TSFP without PML (upper) and with PML
(Lower). The red solid lines represents the interface of the PML region and Physical domain.

5. Extension to rotating BECs (ω 6= 0)

5.1. Direct PML formulation in cartesian coordinates

Let us consider the full GPE (2.1) with rotating term. Basically, the main difference now is that the
z-component of the angular momentum −ωLz = −iω(y∂x − x∂y) is involved into the equation. Extending
the previous PML technique in a stable way is not trivial here. One possible direction could be inspired by
the case of the convected Helmholtz equation (set in the frequency domain) which writes according to the
pressure field p

(1−M2)∂2
xp+ ∂2

yp+ 2ikM∂xp+ k2p = f, (5.1)

in DPhys. Here, M = v0/c0 and k = ω̃/c0, are the Mach number (−1 < M < 1) and the wavenumber,
respectively. In addition, c0 is the sound velocity in the fluid, ω̃ > 0 is the pulsation of the wave, f is a
source term, and the mean velocity v0 is subsonic and uniform. Following [18], a well-suited stable PML for
the duct problem (along the x-direction) can be introduced as

(1−M2)(α(x)∂x + iλ(x))2p+ ∂2
yp+ 2ikM(α(x)∂x + iλ(x))p+ k2p = f, (5.2)

in D. The function α := (1 + iσ/ω̃)−1 must satisfy <(α) > 0 and =(α) < 0, and λ(x) ∈ R. The choice of
λ depends on the constants M and k. Extending a similar approach to the rotating GPE is not clear for
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many reasons: the domain is not a duct but a rectangle, the operator Lz is much more complicated since
it involves a linear combination of terms x∂y and y∂x with variable dependent coefficients (i.e. x & y). For
example, a direct PML approach via coordinate stretching leads to the following PML formulation of the
rotating GPE: for x ∈ D, t ≥ 0

i∂tψ = −1

2

[
1

Sx
∂x

(
1

Sx
∂x

)
+

1

Sy
∂y

(
1

Sy
∂y

)]
ψ +

[
V + β|ψ|2

]
ψ − iω

[
y Ŝy

Sx
∂x −

x Ŝx

Sy
∂y

]
ψ, (5.3)

with

Ŝν = 1 +
eiϑν

ν



∫ ν

Lv

σν(s)ds, ν > Lν ,

0, −Lν ≤ ν ≤ Lν ,∫ ν

−Lv
σν(s)ds, ν < −Lν ,

ν = x, y. (5.4)

However, this PML approach will result in inaccurate computations (not reported here). Blow-up always
arises at the interface between PML region (i.e. DPML) and the physical domain (i.e. DPhys) for all the
proposed absorbing functions and numerical schemes.

5.2. PML formulation in rotating Lagrangian coordinates

To get a well-posed PML formulation for the rotating GPE, we consider here an alternative based on a
reformulation of the initial problem into a rotating Lagrangian coordinates framework [16]. For any time
t ≥ 0, let R(t) be the orthogonal rotational matrix

R(t) =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
, if d = 2,

R(t) =

 cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1

 , if d = 3.

(5.5)

It is easy to check that R−1(t) = RT (t), for any t ≥ 0 and R(0) = I, where I is the identity matrix. For
any t ≥ 0, we introduce the rotating Lagrangian coordinates x̃ as [13, 16, 39]

x̃ = R−1(t)x = RT (t)x ⇔ x = R(t)x̃, x ∈ Rd, (5.6)

and we denote by ψ := ψ(x̃, t) the wave function in the new coordinates system

ψ̃(x̃, t) = ψ (R(t)x̃, t) , x ∈ Rd, t ≥ 0. (5.7)

Therefore, the rotating GPE can be rewritten as a GPE without rotation term but with a time-dependent
potential

i∂tψ̃(x̃, t) =

[
−1

2
∇̃2 + V (R(t)x̃, t) + β|ψ̃|2

]
ψ̃(x̃, t), (5.8)

setting ∇̃2 = ∂2
x̃ + ∂2

ỹ . Now, the PML technique can be directly applied to the new GPE (5.8). All the
details remain the same by just changing the symbols x, y to x̃, ỹ, respectively. The TSFP and ReFP (as
well as TSFEM and ReFEM) proposed for the non-rotating GPE extend here. For the TSFP, the use of
a numerical integration [13, 16, 39] is needed for evaluating the time-dependent potential. Let us remark
that a different transformation was applied in [35] when dealing with cross-derivatives into the nonlinear
Schrödinger equation and using a fourth-order spatial finite-difference scheme and a fourth-order additive
Runge-Kutta time scheme.
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5.3. Numerical examples

Example 5.1. Here, we apply the TSFP method to simulate the dynamics of the rotating GPE with strong
nonlinearity. To this end, we fix β = 10000 and study two cases: one with rotating frequency ω = 2.5 while
the other considers ω = 4. The initial data are prepared by computing the ground states of the GPE with
the same values of β & ω under the quadratic-quartic trapping potential:

V (x, y) =
3(x2 + y2)2 − 4(x2 + y2)

40
. (5.9)

The contour plot of the density of the ground states, and hence for the initial data |ψ(x, t = 0)|2, for each
case is illustrated in the first subfigure in Fig. 5.8 & 5.9, respectively. We then release the ground states
from the trapping potential (i.e. set V (x) ≡ 0) and simulate the dynamics, which is solved by the TSFP
method with absorbing function of type 6 in rotating Lagrangian coordinates. For both cases, the physical
domain (in Cartesian coordinates) is set to be DPhys = [−16, 16]2. To recover the wave function ψ(x, t) in

DPhys (which is transformed back from ψ̃(x̃, t)), in the rotating Lagrangian coordinates we set the “physical

domain” and computational domain as D̃Phys = [−24, 24]2 and D̃ = [−27, 27]2 , respectively. Moreover, the
mesh size and time step size are chosen as h = 1/16 and ∆t = 10−3. Fig.5.8 (ω = 2.5) and 5.9 (ω = 4)
show the contour plots of |ψ(x, t)|2 at different times in Cartesian coordinates. From the figure, we can see
clearly that the TSFP method works very well. Due to the absence of trap, the wave function in both cases
will spread out and hence all the vortices will exit and nothing left finally in the physical domain.

Figure 5.8: Contour plots of |ψ(x, t)|2 at different times for example 5.1 for ω = 2.5. The green solid lines represents the

interface of PML region and “Physical domain” D̃Phy in rotating Lagrange coordinates. The black dashed lines represents the
physical domain DPhy in Cartesian coordinates.

6. Conclusion

In this paper, we proposed and implemented in a relatively simple way the PML formulation of the
rotating GPE in cartesian coordinates for the time-splitting and relaxation pseudospectral schemes. A
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Figure 5.9: Contour plots of |ψ(x, t)|2 at different times for example 5.1 for ω = 4. The green solid lines represents the interface

of PML region and “Physical domain” D̃Phy in rotating Lagrange coordinates. The black dashed lines represents the physical
domain DPhy in Cartesian coordinates.

thorough numerical study shows that the PML absorbing functions proposed in [22, 23] are best suited in
terms of accuracy and numerical stability, thanks to the tuning parameters. In addition, a high accuracy of
the pseudospectral approximation schemes is observed, outperforming as expected a low-order finite element
approximation. In the case of the rotating GPE, a Lagrangian coordinates transformation is used to rewrite
the original equation in the framework of non-rotating GPEs with time-dependent potential. Following
this approach, the PML formulation is directly extended to the rotating case, showing that the method
remains very efficient and accurate for truncating the infinite spatial domain. Future investigations concern
the extension of the PML formulations to polar coordinates and to more general GPEs, including dipolar
interactions and multi-components problems.
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