Polynomial Chaos Level Points Method for One-Dimensional Uncertain Steep Problems - Archive ouverte HAL
Article Dans Une Revue Journal of Scientific Computing Année : 2019

Polynomial Chaos Level Points Method for One-Dimensional Uncertain Steep Problems

Résumé

We propose an alternative approach to the direct polynomial chaos expansion in order to approximate one-dimensional uncertain field exhibiting steep fronts. The principle of our non-intrusive approach is to decompose the level points of the quantity of interest in order to avoid the spurious oscillations encountered in the direct approach. This method is more accurate and less expensive than the direct approach since the regularity of the level points with respect to the input parameters allows achieving the convergence with low-order polynomial series. The additional computational cost induced in the post-processing phase is largely offset by the use of low-level sparse grids that require a weak number of direct model evaluations in comparison with high-level sparse grids. We apply the method to subsurface flows problem with uncertain hydraulic conductivity. Infiltration test cases having different levels of complexity are presented.
Fichier principal
Vignette du fichier
preprint.pdf (536.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02336969 , version 1 (18-11-2020)

Identifiants

Citer

Pierre Sochala, Olivier Le Maitre. Polynomial Chaos Level Points Method for One-Dimensional Uncertain Steep Problems. Journal of Scientific Computing, 2019, 81 (3), pp.1987-2009. ⟨10.1007/s10915-019-01069-z⟩. ⟨hal-02336969⟩
101 Consultations
119 Téléchargements

Altmetric

Partager

More