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Abstract

We propose an alternative approach to the direct polynomial chaos expansion in order to approximate one-dimensional
uncertain field exhibiting steep fronts. The principle of our non-intrusive approach is to decompose the level points
of the quantity of interest in order to avoid the spurious oscillations encountered in the direct approach. This method
is more accurate and less expensive than the direct approach since the regularity of the level points with respect to the
input parameters allows achieving the convergence with low-order polynomial series. The additional computational
cost induced in the post-processing phase is largely offset by the use of low-level sparse grids that require a weak
number of direct model evaluations in comparison with high-level sparse grids. We apply the method to subsurface
flows problem with uncertain hydraulic conductivity. Infiltration test cases having different levels of complexity are
presented.

Keywords: uncertain scalar field approximation, non intrusive spectral method, preconditioning, Gibbs
phenomenon, front propagation

1. Introduction

The goal of this work is to propose a new method to approximate the dependences of a one-dimensional scalar field
on some uncertain input parameters considered random, in view of performing uncertainty analyses. The proposed
approach is designed to deal with steep dependences on the uncertain parameters. The steepness, or hypersensitiv-
ity, relates here to a large variation of the solution for a small variation of the uncertain input parameters [23, 11].
Such a situation appears for instance when solving problems yielding sharp fronts with uncertain propagating veloc-
ities [20, 19]: a small change in the model parameters can change the location of the front with large changes in the
solution at a given spatial location. Polynomial chaos methods (PC) have been developed for uncertainty quantifi-
cation and applied in many application domains [7, 9]. Classical PC methods have several advantages, such as an
exponential convergence rate for smooth quantities of interest (QoI), few restrictions on the parameters distribution
and moments of QoI, and direct exact derivation of the moments and sensitivity coefficients of the PC approxima-
tion. However, classical PC methods suffer from the degradation of the convergence rate when the dependences of
the QoI with respect to the uncertain parameters become steep or non-smooth. Several extensions of the PC method
have been proposed to improve its behavior in presence of parametric discontinuities, including the introduction of
piecewise polynomial approximations [21], multiwavelet expansions [11], Padé–Legendre approximants [4], and it-
erated polynomial expansions [13]. More recently, preconditioning techniques using invertible transformations has
been proposed as a mean to tackle the complexity of the QoI. The principle of the preconditioning is to introduce a
transformation absorbing a large part of the stochastic nonlinearities of the QoI in order to improve the accuracy of
the approximation. As an example, time stretching preconditioners have been developed in [10, 1, 2] to get sparse
polynomial chaos representations in uncertain dynamical systems. Nevertheless, the preconditioned PC method lacks
a systematic procedure to propose appropriate transformations yielding well-conditioned approximation problems.
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In this work, we aim at proposing a more systematic approach, considering generic invertible transformations that
are implicitly defined by relying on interpolation procedure based on the level points (LP) of the uncertain field. The
interest of the LP method (LPM) is threefold. Firstly, it performs a preconditioning of the field to be approximated,
thus avoiding the need to provide a priori an explicit transformation with prescribed structure. In addition, the trans-
formation can be refined in an adapted fashion as detailed below. Secondly, the computational cost of constructing
the approximation can be drastically reduced when the LPs defining the transformation have smooth dependences
with respect to uncertain input parameters. As a result, the polynomial degree of the PC expansion of the LPs is low
and can be estimated from a limited number of observations (simulations). Finally, the proposed method involves
interpolation procedures that ensure the boundedness of the reconstructed approximation, contrary to the direct PCE
of the field which can lead to oscillations (Gibbs phenomenon) with, for instance, violation of the maximum principle.

This paper is organized as follows. Section 2 briefly introduces the background of the PCE with the non-intrusive
spectral projection method used to compute the expansion coefficients. Section 3 details the steps of the proposed
method, starting with the definition of the LPs and their PC expansion, followed by the interpolation procedure to
reconstruct 1D fields. Section 4 describes an adaptive version of LPs method where the approximation is refined to
control the reconstruction error associated with a particular realization of the parameters. Section 5 illustrates the
method on its computational efficiency on a subsurface flow problem with uncertain hydrological laws, infiltration
rate, and initial saturation state. Conclusion and discussion are finally provided in Section 6.

2. Background on polynomial chaos expansions

Consider u(ξ) ∈ R a scalar output of a model depending on some random input parameters ξ = (ξ1, · · · ,ξN) ∈ Ξ ⊆

RN with probability density p : Ξ 7→ R+. We denote E[·] the expectation operator and L2(Ξ,p) the space of second
order functionals, that is

u(ξ) ∈ L2(Ξ,p) ⇐⇒ E
[
u2

]
=

∫
Ξ

u(ξ)2 p(ξ)dξ < ∞. (1)

We shall restrict ourselves to the case of independent parameters such that ξ is a collection of independent random
variables and p has a product form. In the following, 〈·,·〉 and ‖ · ‖L2 denote the inner product of L2(Ξ,p) and its
associated norm, respectively.

2.1. Polynomial chaos expansion

Let us denote {φk(ξ), k ∈ NN} an Hilbertian basis of L2(Ξ,p), where φk is a multivariate polynomial in ξ and k
is a multi-index indicating the polynomial degree in the ξi’s. The total degree of φk is denoted |k| :=

∑N
i=1 ki. Then,

u ∈ L2(Ξ,p) has the so-called Polynomial Chaos expansion

u(ξ) =
∑
k∈NN

ukφk(ξ), uk = 〈u,φk〉 =

∫
Ξ

u(ξ)φk(ξ)p(ξ)dξ. (2)

The PC approximation uK (ξ) of u(ξ) is obtained by truncating the expansion above to a finite series

uK (ξ) :=
∑
k∈K

ukφk(ξ), (3)

where K is the set of multi-indices related to the expansion. Typically, the truncation is obtained by prescribing the
maximal total degree of the approximation, say No, such that for instance

K(No) = {k ∈ NN , |k| ≤ No}.

The convergence rate of the PCE of u with the truncation order No depends on the regularity of u with respect to ξ and
is discussed in section 3.
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2.2. Non intrusive projection method

Several methods can be used to compute the expansion and we rely in the present work on the sparse Pseudo-
Spectral Projection [6, 5] (PSP). The LP method presented in the next section is not dependent on the specific PC-
projection algorithm used to estimate the expansion coefficients, and any non-intrusive alternative can substitute. By
non-intrusive, we mean an approach that uses evaluations of u(ξ) at a finite number of values of ξ to build the approx-
imation in (3). The non-intrusive methods present the advantage of requiring only the availability of a deterministic
solver to compute u(ξ) at the requested ξ.

The classical non-intrusive spectral projection uses the definition (2) and computes the expansion coefficients uk by
evaluating N-dimensional integrals [12, 15]. Typically, sparse quadrature formulas based on the partial tensorization
of nested one-dimensional quadrature rules via the Smolyak’s formula [17] are considered, leading to expressions of
the form

uk =

∫
Ξ

u(ξ)φk(ξ)p(ξ)dξ '
Np∑
j=1

w ju(ξ j)φk(ξ j), (4)

where {ξ j} and {w j} are the Np integration points and associated weights. The coefficients Πk, j := w jφk(ξ j) define the
so-called projection matrix [1] such that the vector of the expansion coefficients u is directly computed through the
matrix-vector product,

u = Πu, (5)

where u := (u(ξ1), · · · ,u(ξNp
))> ∈ RNp is the vector of the model outputs at the integration points. The PSP method

differs from the classical spectral projection by using different quadrature formulas depending on the φk. The quadra-
ture formulas are selected to avoid internal aliasing, but the definition of the expansion coefficients can be eventually
recast in the form of (5), albeit with a more complex definition of the projection matrix Π, see [6, 5, 22].

Finally, the PCE of u(ξ) can be compactly written as

u(ξ) ≈ uK (ξ) = (Πu) · φ(ξ), (6)

where φ(ξ) = (φk(ξ))k∈K ∈ R|K| is the vector basis functions. It is seen that the computational complexity for
constructing the PC expansion is related to the number Np of model evaluations (i.e. the number of quadrature
points) involved in the projection. In the PSP method, this number of evaluation is directly related to the size of the
set K retained in the expansion of u. The higher the truncation degree the higher the number of quadrature points
needed. Further, for a given total order No, Np drastically increases with the number of parameters N. As a result, the
convergence rate of the PC approximation is crucial for the feasibility of the projection, as high order PC expansions in
high-dimension are too expensive without appropriate adaptive strategies exploiting possible sparsity in the expansion
coefficients.

3. Level Point method

We are interested in the reconstruction of a scalar stochastic field U(x,ξ) indexed by a one-dimensional physical
variable x in a finite interval, x ∈ [a,b]. The PC expansion introduced above can be extended by indexing the expansion
coefficients on x. For every x, the convergence rate of the PC expansion depends on the smoothness of U(x,·) with
respect to ξ. In the case of polynomial expansions, an exponential convergence rate with the polynomial degree is
achieved for U(x,·) ∈ C∞(Ξ). We are concerned with situations where U may not have such smoothness, due to
localized steep dependences and gradients, possibly involving a local loss of differentiability with respect to ξ. These
features can compromise or limit the L2 convergence rate of the polynomial approximation which can be plagued by
Gibbs phenomena, resulting in unphysical oscillations. Our main objective is to prevent such spurious oscillations
in order to respect monotonicity and boundedness properties of U in its approximation. To this end, we propose to
construct an approximation of the stochastic level points (LPs) instead of the direct PC approximation of U.
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3.1. Level Points interpolation
For the sake of simplicity, we assume that U(x,ξ) is monotonically increasing with respect to x and bounded for

x ∈ [a,b]. We denote U−(ξ) and U+(ξ) the values of U at x = a and b respectively, such that it holds for almost every
ξ and a ≤ x1 < x2 ≤ b,

U−(ξ) ≤ U(x1,ξ) < U(x2,ξ) ≤ U+(ξ).

The generalization of the proposed method to non-monotonic U is discussed in remarks 3.1 and 3.3, as well as in the
conclusion.

We start by scaling the field U by means of a stochastic preconditioning P through

Y(x,ξ) := P(U(x,ξ)) =
U(x,ξ) − U−(ξ)
U+(ξ) − U−(ξ)

. (7)

This preconditioning maintains the monotonicity and ensures that for any v ∈ [0,1] there is a unique X(v,ξ) ∈ [a,b]
satisfying the equation

Y(X(v,ξ),ξ) = v.

We call X(v,·) the stochastic level point associated to level v. Given a finite collection V of Nl + 2 > 2 ordered and
distinct levels 0 = v0 < v1 < · · · < vNl < vNl+1 = 1, we denote X the corresponding collection of level points
Xi(ξ) = X(vi,ξ):

X = {Xi(ξ), 0 ≤ i ≤ Nl + 1} .

Finally, for each level vi ∈ V, we define the stochastic scaled value Vi from the backward transformation P−1, that is

Vi(ξ) := P−1(vi) = (U+(ξ) − U−(ξ)) vi + U−(ξ). (8)

The final approximation of U, denoted ULP(x,ξ), is obtained using a piecewise linear interpolation, namely

ULP(x,ξ) :=
Nl+1∑
i=0

Vi(ξ)ϕi(x;X) =

Nl+1∑
i=0

[
(U+(ξ) − U−(ξ)) vi + U−(ξ)

]
ϕi(x;X). (9)

In (9), the ϕi(x;X) are the nodal functions (also called hat or P1-Lagrange functions) of the set of points (mesh) X.
These functions are piecewise linear in x and such that ϕi(x,X) is 0 for x = X j,i(ξ) and 1 for x = Xi(ξ). Clearly,
the approximation error arising from (9) comes from the interpolation error which, for sufficiently smooth functions
(in x), can be controlled by selecting the number of intermediate levels Nl and possibly the level values vi. This is
further discussed in the next section and illustrated in the numerical experiments presented later. Also, higher order-
interpolation strategies can be considered in the reconstruction formula; an interest of the piecewise linear one is the
boundedness of the resulting approximation ULP(x,ξ), which by construction has for range [U−(ξ),U+(ξ)]. In addition,
if the range of U(x,ξ) is deterministic, the preconditioning step and the backward transformation are pointless and can
be omitted.

Remark. The LP method can be generalized to non-monotonic functions w.r.t. x, if the number of LPs for all level
vi ∈ V remains constant for all ξ. In this case, we introduce the set of LPs Zi := {Xi,l(ξ), 1 ≤ l ≤ Nz

i }, with Nz
i denoting

the number of LPs associated with the level value vi, and the reconstruction formula (9) can be straightforwardly
extended to accommodate this situation.

3.2. PC-LP method
We now proceed with the stochastic discretization of the LP method. To this end, we denote in the following

U = {U( j)(x), j = 1, . . . ,Np} the PSP set containing the evaluation of U(x,ξ) at the PSP nodes:

U( j)(x) := U(x,ξ j), j = 1, . . . ,Np.

The PC expansion of U at the extreme points x = a and b is determined using the PSP method introduced in the
previous section. For a given multi-index set K , it results in PC approximations UK− (ξ) and UK+ (ξ). The stochastic
level points Xi(ξ) are also approximated through a PSP procedure

Xi(ξ) ' XKi (ξ) = (Πxi) · φ(ξ), (10)
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where xi := (xi,1, · · · ,xi,Np )> is the vector of the LP values associated to the level vi at the Np PSP nodes {ξ j}. More
precisely, xi, j is the unique zero of

gi, j(x) := U( j)(x) − U( j)(a) − vi

[
U( j)(b) − U( j)(a)

]
. (11)

Note that solving (11) requires in practice an interpolation procedure, since in most cases the function U( j)(x) will be
discretized in x. We shall denote consistently XK :=

{
XKi (ξ), 0 ≤ i ≤ Nl + 1

}
the element-wise approximation of X,

and the corresponding scaled values are approximated through

VKi (ξ) =
(
PK

)−1
(vi) :=

(
UK+ (ξ) − UK− (ξ)

)
vi + UK− (ξ). (12)

Finally, the PC-LP approximation UKLP(x,ξ) of U(x,ξ) is

UKLP(x,ξ) :=
Nl+1∑
i=0

VKi (ξ)ϕi(x;XK ) =

Nl+1∑
i=0

[(
UK+ (ξ) − UK− (ξ)

)
vi + UK− (ξ)

]
ϕi(x;XK ). (13)

To compare the proposed approach with the direct PC approximation, let us consider a discretization of U over a
fixed (deterministic) mesh Ω with support points x0 = a < · · · < xi < · · · < b = xNd ; using again a piecewise linear
interpolation over Ω we have

U(x,ξ) ≈
Nd∑
i=0

Ui(ξ)ϕi(x; Ω).

Proceeding with the PC approximation of the nodal values Ui(ξ) = U(xi,ξ) the direct approximation writes

U(x,ξ) ≈ UK (x,ξ) :=
Nd∑
i=0

UKi (ξ)ϕi(x; Ω). (14)

The comparing expressions (13) and (14) highlights the essential difference between the PC-LP and the direct ap-
proximations. The latter (linearly) interpolate the PCE of U(x,ξ) between fixed values of x, whereas the PC-LPM
uses an interpolation over a ξ-dependent mesh X of [a,b], corresponding to iso-contours of the preconditioned field
Y . Therefore, the LP method can be viewed as a preconditioned approach involving 2 successive transformations: a
scaling followed by an implicit mapping from Y(x,·) to X(Y,·) which discretized at some selected values of Y . This
mapping, schematically illustrated in Fig. 1, is invertible owing to the monotonicity in x of U(x,·). The left plot in
Fig. 1 schematizes the case of a steep variation with x of U at a location that depends on ξ. This yields a large
variability of U(x,ξ) as represented by the vertical extent of the gray area. The result of the LP transformation, which
consists in a vertical scaling followed by a rotation of 90 degrees, is shown in the right plot of Fig. 1. It is seen
that the variability of the level points Xi at a value Yi ∼ vi is reduced, with potentially a much tighter PC spectrum
requiring less computational efforts to be approximated. For instance, U(xi,ξ) can be non-smooth in ξ, while Xi(ξ)
can be C∞(Ξ).

3.3. Algorithms

The PC-LP method presented above involves two steps that can be effectively distinguished: i) a pre-processing
step where the approximation is constructed, and ii) a post-processing step where the approximation is queried to
retrieve values of UK (x,ξ) at points x of interest and for sampled valued ξ(θ) of the random parameters. Algorithms 1
and 2 summarize the basic computational tasks involved in the construction and sampling steps, respectively. Specif-
ically, Algorithm 1 uses the realizations of U at the nodes of the PSP method to generate the PC-LPs set XK for a
prescribed number of level and the PCE of the boundary value. These outputs are used by Algorithm 2 to evaluate the
corresponding PC-LP approximation at a given point x ∈ [a,b] and a particular realization ξ(θ) of the random input.
Note that these algorithms are provided for clarity and are not designed for computational efficiency. In particular,
one may want to use a less trivial evaluation algorithm if UKLP is sought at multiple locations x for the same realization
ξ(θ).
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Figure 1: Schematical illustration of the direct PC and PC-LP methods.

Algorithm 1 shows that the PC-LP method involves some overhead to construct the approximation, in particular
for finding the LPs of U at the PSP nodes. In fact, as shown in the following examples, the approach is more efficient
because a significantly lower number of PS nodes is needed, thanks to the smoothness of the LPs, so the computational
savings results from much fewer evaluations of U. However, as shown in Algorithm 2, it can be anticipated that the
sampling of the PC-LP approximation demands more effort than the sampling of the direct PC approximation because
the interpolation mesh is changing from a realization of ξ to another. The complexity of the LP method is discussed
in section 4.3.

Algorithm 1 Construction of the PC-LP approximation

Input: PSP set U, requested number of levels Nl
Compute UK− (ξ) and UK+ (ξ) by PSP . Approximate the BVs
XK =

{
XK0 = a, XKNl+1 = b

}
. Initialization of PC-LP set

V = {v0 = 0, vNl+1 = 1} . Initialization of level set
for i = 1, . . . ,Nl do

Set vi = i/(Nl + 1) . Set level value
for j = 1, . . . ,Np do

Find xi, j the zero of gi, j(x) in (11)
end for
Compute XKi (ξ) using (10) . PSP of the level point
XK ← XK ∪ {XKi (ξ)} . Update the PC-LP set
V← V ∪ {vi} . Update the level set

end for
Output: XK , V, UK− (ξ) and UK+ (ξ).

Remark. When the number of level points associated with a level vi is independent of ξ, the generalization of the
algorithm 1 to non-monotonic functions w.r.t. x is possible as mentioned in Remark 3.1. The main impact of having
more than one level point is that the corresponding zeros at a PSP node must be properly identified as the realization
of a Xi(ξ) or another. Similarly, the evaluation algorithm 2 can be adapted by associating a level value to each of the
level points.
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Algorithm 2 Evaluation of the PC-LP approximation

Input: Evaluation point (x,ξ(θ)), PC-LP set XK , Level set V, UK− (ξ) and UK+ (ξ)
Set u− = UK− (ξ(θ)), u+ = UK+ (ξ(θ)) . Compute boundary values
Set Ω = ∅ . Initialize mesh
for XKi (ξ) ∈ XK do

Ω← Ω ∪ {xi = XKi (ξ(θ))} . Build the interpolation mesh
Set wi = u− + vi(u+ − u−) . Set scaled value at the interpolation node

end for
Output: u =

∑|Ω|
i=1 wiϕi(x; Ω) . Perform interpolation at x

4. Adaptive method and complexity

As shown by (13), the PC-LP approximation consists in a piecewise linear interpolation of stochastic nodal values
over a stochastic mesh consisting of the LPs in XK . In fact, the expression of the scaled values VKi (ξ) in (12) indicates
that the nodal values are deterministic whenever the boundary values U− and U+ have no dependences on ξ. In
this situation, the approximation error reduces entirely to a contribution due to the use of XK in place of X, and
contribution related to the interpolation scheme. The error on the stochastic LP can be reduced by considering more
accurate estimate XKi (ξ), for instance increasing the polynomial degree of the PSP. For the latter error contribution, a
mesh adaptation strategy is relevant and pursued in this section.

The benefit of the adaption can be appreciated from Fig. 2a and Fig. 2b, where a uniform and an adapted dis-
cretization of the function range have been respectively used to reconstruct a hyperbolic tangent function mimicking
a front. The two discretizations use the same number Nl of levels. For the uniform discretization of the range, the
interpolation error is the largest where U is mostly flat, that is in the region surrounding the domain boundaries. The
error is due to the absence of interpolation points on the part of the domain with significant curvature. On the contrary,
the adapted distribution of points in Fig. 2b shows a much lower level of error.

−5 0 5

−1

−0.6

−0.2

0.2

0.6

1

x 

(a) Uniform discretization of the range

−5 0 5

−1

−0.6

−0.2

0.2

0.6

1

x 

(b) Adapted discretization of the range

Figure 2: Approximation of an hyperbolic tangent function (solid line) and its piecewise linear approximation obtained with 21 points (dashed line)
but different discretization of the range.

The example of the adapted discretization of the hyperbolic tangent is not complete in the sense that it concerns
the approximation of a deterministic function, while in our problem U(x,ξ) is random. Extending the original PC-
LP approximation in (13), to an adaptive approach, would consist in selecting adaptively the sequence of levels vi

discretizing the range of U in order to achieve the best interpolation error with a minimal number of levels Nl. In
other words, the uniform discretization of the range would be substituted with an adapted one. The main issue with
this approach is the lack of robust estimators to characterize the interpolation error (in x) in the random case, as one
has to consolidate for every x the error for every ξ. This could be achieved by sampling Ξ and averaging the error
estimate, but we decided to follow here an alternative route refining the PC-LP approximation for every given sampled
values ξ(θ) of the parameters.
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4.1. Interpolation error
The main advantage of the proposed adaptive strategy is that it works on individual samples of U and therefore

relies on classical error estimation. The starting point is the evaluation of the PC-LP approximation (13) for a sample
value ξ(θ) ∈ Ξ. The sample corresponds to a deterministic mesh Ω, with points xi = XKi (ξ(θ)) having associated level
values vi and scaled values ui = Vi(ξ(θ)). Assuming that the mesh points are indexed so a = x0 < x1 < · · · < xNl <
xNl+1 = b, we denote the mesh intervals Ii := [xi−1,xi] with lengths hi := xi − xi−1.

Considering u ∈ C2([a,b]) and π1 its mesh-based piecewise linear interpolation polynomial, the interpolation error
on the interval Ii, defined as ei(x) := (u(x) − π1(x))|Ii , is bounded by [14]

|ei(x)| ≤
(hi)2

8
max
ν∈Ii

∣∣∣u′′(ν)∣∣∣ , (15)

where u′′ is the second derivative of u. If u ∈ C3([a,b]), a finite difference approximation of its second derivative is

u′′i ' D
(2)
h ui :=

2
hiS i

ui−1 −
2
Pi

ui +
2

hi+1S i
ui+1, (16)

where S i = hi + hi+1, Pi = hihi+1 and in our case ui = Vi(ξ(θ)). The computable interpolation error estimator Ei on Ii

is then defined as

Ei :=
(hi)2

8
max

(∣∣∣D(2)
h ui−1

∣∣∣,∣∣∣D(2)
h ui

∣∣∣) . (17)

We have observed in our numerical tests that using higher order approximations of the second derivative, as a third-
order finite difference approximation with a five-points stencil, has a weak effect on the adaptation, justifying the use
of (16) to localize the interval with the maximum error.

4.2. Adaptive algorithm
Let us denote l the index of the interval with the highest estimated error. To reduce this error, we need to introduce

a new level and refine the PC-LP approximation. In the deterministic case, one would simply break Il into two (equal)
subintervals. However, the situation is here more complex because the location of the new interpolation point cannot
be explicitly specified but derives from a particular realization of a random LP defined from the prescribed level value.
In other words, we have to select a level value v∗ ∈]vl−1,vl[ corresponding to an unknown stochastic LP XK (v∗,ξ) which
should be equal to (xl − xl−1)/2 for the realization ξ(θ); that is we have to find v∗ such that

x∗ := XK (v∗,ξ(θ)) =
xl + xl−1

2
. (18)

We rely on a simple bisection method to solve this problem, using v∗ = (vl−1 + vl)/2 as initial guess. The bisection
process is halted when the current x∗ satisfy the criterion |xl + xl−1 − 2x∗| < 2αhl for some positive α < 1. In practice
we used α = 1/20. The evolution of the approximation from the initial guess to the converged solution v∗ is illustrated
in Fig. 3.

The most computationally intensive part of the proposed adaptive scheme is the computation and the evaluation
of the stochastic LP for the successive candidates v∗. In practice, the determination of XK (v∗,ξ) amounts to finding
for each PSP nodes the unique zero of the function g∗, j defined by

g∗, j(x) = U( j)(x) − U( j)(a) − v∗
[
U( j)(b) − U( j)(a)

]
. (19)

The PSP of these zeros provides the PC coefficients of XK (v∗,ξ). An important point to be underlined is the fact that
the adaptation uses the same PSP set U, and therefore requires no additional costly direct evaluation of the model.
Finally, when the new level v∗ has been found, the LP set XK is completed and the indexation of the LPs is updated
to maintain the ordering of the corresponding level values vi. The procedure can then repeated to yield the next level
and reduce further the interpolation error. Algorithm 3 outlines the adaptive procedure for a given realization ξ(θ).
The algorithm has two stopping criteria: one based on the maximum number of levels and a second one which halts
the adaptation when the interpolation error bound becomes lower than an a priori tolerance εtol. The output of the
algorithm is an adapted set XK of stochastic level points and corresponding level values V = {vi}.
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Figure 3: New interpolation point x∗ in the interval Il, at initialization using v∗ = (vl−1−vl)/2 and at convergence. Note the effect on the interpolation
error.

Algorithm 3 Adaptive LP construction

Input: U, XK , V, realization ξ(θ), tolerance εtol, maximum number of levels Nlmax
Set Nl = |XK | . Current number of levels
while Nl < Nlmax do

For i = 1, . . . ,Nl, compute Ei using (17) . Compute interval error
Find interval Il with largest error El

if El < εtol then
Break . Check error tolerance

end if
Find splitting level v∗ such that XK (v∗,ξ) satisfies (18) . Define new level
V← V ∪ {v∗}, XK ← XK ∪ {XK

∗ } . Update LP sets
Re-order the elements of V and XK
Nl ← Nl + 1

end while
Output: XK , V

Whence Algorithm 3 has been applied, the evaluation of UK (x,ξ(θ)) can be performed using Algorithm 2 for
any value of x ∈ [a,b]. Evaluation of U at other realizations of ξ is also possible using Algorithm 2, although the
approximation may not be adapted with possibly larger interpolation error. In fact, Algorithm 3 can be employed to
generate the sets of levels and LPs, V and XK , yielding an interpolation error less than εtol with controlled probability.
This goal can be achieved through successive calls of Algorithm 3 for (randomly) sampled values of ξ, possibly by
allowing progressively an increase of the size of V. However, it is important to stress that the proposed approach
reduces the interpolation error of the reconstruction, which is only one the error contributions. Consequently, the
error U − UKLP does not vanish when εtol → 0, and the tolerance should be consistent with the PSP error, and possibly
with the discretization error in the elements of U. Balancing these errors is an important topic that will be investigated
in the future. In particular, in the case of very fine discretizations of the range, it could be that (18) has no solution
v∗ ∈ [vl−1,vl] because of the finite PC discretization, though this situation never happen in our numerical tests, even
for the lowest PC orders, owing to the fast convergence the LPs approximations.

4.3. Complexity

We complete this section by a brief discussion on the computational complexity, assuming that the PC-LP method
will be used to estimate statistics of U from M samples ξ(θ). The CPU time to generate M samples of the PC-LP
approximation is separated into the construction and the evaluation times.

The construction time Tc can be estimated by

Tc ∝ T1Np + T2NpNlCadapt, (20)
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where the first term T1Np accounts for the deterministic model evaluations U( j) at the Np PSP nodes, T1 being the PSP
node-averaged time as this time may vary from a node to another. The second term is the time to compute X, V as well
as U− and U+; it is essentially proportional to the number of levels Nl and the number of PSP nodes Np, with a time
T2 corresponding to the (averaged) time for finding the zero of a gi, j. Note that the computational time for applying
the PSP operator, whence all nodal values are known, is negligible in our numerical experiments. Finally, the constant
Cadapt depends on the adaptive strategy used. Its value can range from Cadapt = 1 in the case of a non-adapted PC-LP
method with Nl pre-selected levels, to Cadapt = M in the case where Nl adapted levels are determined for every of the
M samples.

The evaluation time Te can be estimated by

Te ∝ T3(K)NlM + T4(Nl)M. (21)

The first contribution to Te reflects the evaluation of the PC expansions for the Nl stochastic LPs and boundary values
(see Algorithm 2) and for the M samples, and therefore depends on the PC basis defined by K . In fact, because the
basis functions must be evaluated only once per sample, the constant T3(K) is essentially proportional to the basis
dimension |K|, reflecting the complexity of the dot product between basis functions and PC coefficients. Finally, the
last contribution T4(Nl)M measures the interpolation time necessary to evaluate (13) at the set of the x requested.

5. Results

We illustrate the PC-LP method on a 1D subsurface flow problem with uncertain hydrological law. Specifically,
we focus on the prediction of the water pressure field which is the QoI in various applications such as the water
resources forecast, the study of infiltration processes, and the hydrological parameter inference.

5.1. Physical model and deterministic solver

We consider subsurface flows described by the 1D Richards’ equation [16] in conservative form,

∂t
(
θ(ψ)

)
− ∂z

(
K(ψ)(∂zψ − 1)

)
= 0, (22)

which combines the water mass conservation principle and the Darcy’s law. In (22), z is the (downward oriented)
vertical coordinate, ψ(z,t) the pressure head, θ(ψ) the volumetric water content, and K(ψ) the hydraulic conductivity.
The nonlinear parabolic equation (22) is equipped with an initial condition ψ(·,0) = ψ0 and Dirichlet or Neumann
boundary conditions at the top (z = 0) and bottom (z = L) boundaries of the domain. We shall use ψ(A,·) = ψA

D or
v(A,·) = vA

N for A ∈ {0,L}, where v(ψ) = −K(ψ)(∂zψ − 1) is the flow rate, and ψA
D and vA

N denote the Dirichlet and the
Neumann data prescribed at x = A. The hydrological laws are described by the Brooks–Corey’s relations [3],

θ(ψ) =

 θs (ψ/ψa)−
1
b if ψ < ψa,

θs if ψ ≥ ψa,
K(ψ) =

 Ks (ψ/ψa)−γ if ψ < ψa,

Ks if ψ ≥ ψa,

where θs is the saturated water content, Ks the saturated hydraulic conductivity, ψa the air entry pressure head, b an
exponent related to the pore-size distribution and γ := 2 + 3b−1. In the following, we use θs = 0.562, ψa = −4.55 cm,
b = 13.3, while Ks is assumed to be uncertain but the set of the hydrological parameters can be treated as uncertain as
we have done in [18]. The stochastic parametrization of Ks is discussed in the examples below.

The QoI is the pressure field at a final time T > 0, and ψ(z,T ) is simply denoted ψ(z) hereafter. The physical model
is solved with a Discontinuous Galerkin (DG) method on a uniform spatial mesh, a backward differentiation formula
for the time discretization and a Newton linearization of the non-linear terms (see [18] for more details). Preliminary
tests have been performed to select the mesh size h and a time step δt ensuring sufficiently converged deterministic
approximations over the whole uncertain parameters range, and these discretization parameters are kept fixed in all
subsequent simulations. For the PC-LP approximation of the uncertain pressure, a continuous affine reconstruction
interpolating the DG solution at the center of the spatial elements is used for the PSP realizations U( j).
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5.2. Case of a single uncertain parameter
5.2.1. Problem description

For illustration and validation purposes, we first consider the case of an infiltration in an homogeneous soil with
one uncertain parameter, the constant saturated conductivity Ks. We set L = 50 cm, T = 30 min, ψ0

D = 0, ψL
D = ψ0 =

−1 m, while Ks [cm · s−1] is modeled as a random variable with log-uniform distribution over the decade [10−4,10−3].
The parametrization of Ks uses a single canonical random variable ξ with uniform distribution in the unit interval:

Ks(ξ) = 10ξ−4, ξ ∼ U[0,1].

Fig. 4 shows the computed pressure head field at time T for the extreme and mean values of Ks. The pressure
field is monotonic w.r.t. z and exhibits a steep wetting fronts whose location varies with Ks because its velocity is
increasing with saturated conductivity. As a result, the variability of the pressure head is larger in the right part of the
domain where the front can be found and is zero in areas that are not crossed by the front at the considered time.
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(c) Ks = 10−3

Figure 4: Pressure head for the extreme (left and right) and mean (center) values of Ks. Problem of Section 5.2.1.

5.2.2. PC-LP approximations
The direct PCE (14) is first performed using an increasing PC order No = 10, 20, and 50. An evaluation of these

direct PC expansions is shown in Fig. 5 for the mean Ks. The impact of the steep variation in the pressure head
at a location that depends on ξ is clearly noticeable for z ∈ [10,30], with a pollution of the approximation by large
spurious oscillations. These oscillations are also present in the reconstruction at other values of Ks (not shown). As
the pressure head field is smooth in z, the oscillations decay slowly with the polynomial order and eventually become
barely visible for No = 50. Such large PC order would call for too many PSP nodes for the evaluation of the PC
coefficients in higher dimension, thus compromising the applicability of the direct approach to problems with more
than few uncertain parameters.
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Figure 5: Evaluations of the direct PC approximation of the pressure head for the mean Ks at orders No = 10, 20, 50 as indicated. Problem of
Section 5.2.1.

In contrast to the direct PC method, Fig. 6 shows the approximation of the pressure head obtained with the PC-LP
method using No = 4 only. The plots in Fig. 6 show the PC-LP reconstruction for the value of ξ corresponding to
the mean value of Ks and using a uniform discretization of the pressure head range with Nl = 10 (left) and Nl = 20
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(right) levels. It is seen that even though the polynomial degree used, No = 4, is much less than for the direct PC
method shown above, no spurious oscillations are polluting the approximation. In addition, the maximum principle is
satisfied.
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(a) Nl = 10
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(b) Nl = 20

Figure 6: Exact solution (computed from DG deterministic solver) for the mean Ks (solid line) and its uniform PC-LP approximation (bullets)
using No = 4. The number of level Nl in the approximations is indicated. Problem of Section 5.2.1.

The plots in Fig. 6 highlights the possibly large error and slow convergence of the PC-LP method when a uniform
discretization of the range is used. In particular, the linear reconstruction from the level points will induce an error
in O(1/Nl) over a large portion of the domain (here for z > 15). This error is efficiently reduced by using the
adaptive method, as illustrated in Fig. 7, where the adaptive PC-LP approximation is reported at several iterations
of Algorithm 3 and for the same value of Ks. Fig. 7 highlights the improvement of the convergence arising from
the adaptivity, as the approximation with 16 LPs (right plot) is indistinguishable from the exact solution when the
non-adapted approach with 20 LPs has a significant error (see Fig. 6b).
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(a) Iteration 3 - Nl = 4
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(b) Iteration 7 - Nl = 8
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(c) Iteration 15 - Nl = 16

Figure 7: Exact solution (computed from DG deterministic solver) for the mean Ks (solid line) and its adaptive PC-LP approximation (bullets)
using No = 4. The number of level Nl in the approximations is indicated. Problem of Section 5.2.1.

5.2.3. Error analysis
The error of the different PC-LPs approximations is measured using a Monte Carlo (MC) estimate of the mean

squared error, say ê(z), defined by

ê(z) :=
1
M

M∑
i=1

[
ψh(z,ξ(θi)) − ψKLP(z,ξ(θi))

]2
, (23)

where ξ(θi) are the MC samples drawn from the density p(ξ). In practice, M = 103 are used in the estimation of ê(z).
Fig. 8 presents the error ê(z) for the uniform (left) and adapted (right) level discretizations with Nl = 30, and using

PC approximation with No = 2, 3 and 4 as indicated. For No = 2 the errors of the uniform and adapted approximations
are comparable for z ∈ [0,30], while for z > 30 the error of the adapted approach is much less than for the uniform
one. Also, when increasing the PC order, the error is seen to remain essentially constant in the lower part of the

12



column (z > 30). This suggests that in this part the error is dominated by the level discretization and not by the PC
approximation, as one would have expected from the analysis of the solutions for the mean Ks reported above. For
the upper part of the column, z < 30, the uniform and adapted methods show a different behavior with the order No.
While the error of the adapted PC-LP method continues to decay when No increases, the error of the uniform method
stagnate after No = 3. Again, a dominant level discretization error can be blamed in the uniform case, when the
adaptation with only Nl = 30 levels is seen to yield an error dominated by the PC approximations up to No = 4.
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(a) Uniform discretization
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(b) Adapted discretization

Figure 8: Error ê(z) for the uniform and adapted level selection and Nl = 30. The errors are reported for No = 2, 3 and 4. Problem of Section 5.2.1.

Fig. 9 shows the errors of the PC-LP method for the uniform and adapted level selection, in the case of No = 4.
The errors are reported for Nl = 20, 30 and 40. The curves show that the error decays when more levels are involved
in the construction, and with a faster rate and lower values in the adaptive approach. The decay of the error with
Nl confirms that the PCE approximation error is here small; however, it is expected that the error will completely
level-off for larger Nl.
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Figure 9: Error ê(z) for the uniform and adapted level selection and No = 4. The errors are reported for Nl = 20, 30 and 40. Problem of
Section 5.2.1.

The behavior of the PC-LP error can also be appreciated from Table 1, which reports the MC estimates of the
space-integrated mean-squared errors (23) using their approximated value at the centers zi of the spatial mesh ele-
ments,

Ê :=

√√√
h

Nx∑
i=1

ê(zi)2, (24)

where Nx = 100 is the number of elements and h = 0.5 cm. In particular, the results stress the importance of increasing
jointly No and Nl to effectively reduce the error, as well as the improvements brought by the adaptivity.
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Uniform discretization Adapted discretization
No Nl = 20 Nl = 30 Nl = 40 Nl = 20 Nl = 30 Nl = 40

3 4.80 × 101 2.21 × 101 1.27 × 101 1.13 8.77 × 10−1 8.08 × 10−1

4 4.77 × 101 2.18 × 101 1.24 × 101 6.37 × 10−1 2.19 × 10−1 1.23 × 10−1

5 4.77 × 101 2.18 × 101 1.24 × 101 5.93 × 10−1 1.94 × 10−1 1.03 × 10−1

Table 1: Integrated error Ê for PC order No = 3, 4 and 5 and number of levels Nl = 20, 30 and 40. Problem of Section 5.2.1.

To better understand the effect of adaptivity, we provide in Fig. 10 plots of approximation ψKLP(ξ) versus the "exact"
value ψh(ξ), for the values of ξ in the MC set, and the uniform and adapted methods. These so-called Q-Q plots are
considered at locations z = 10 cm and z = 27 cm. At z = 10 cm, the uniform and adaptive PC-LP methods yield
comparable errors, while the improvement brought by the adaptivity is very significant at z = 27 cm. Indeed, at this
location that is reached by the front only for the highest values of Ks, the uniform approach yields a large error for all
events corresponding to a front remaining upstream. On the contrary, the adapted approach is able to control the error
of all events.
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Figure 10: PC-LP approximations versus exact solution at two selected spatial locations. Numerical parameters are No = 5 and Nl = 40. Problem
of Section 5.2.1.

5.3. Higher dimensional problem

5.3.1. Homogeneous Ks

The objective of this problem is to test and illustrate the PC-LP method on a situation involving a higher number
of uncertain input parameters. To this end, we fix L = 40 cm and T = 2 h and investigate the effects of uncertainties
in the boundary and initial conditions, and in the saturated conductivity. For the boundary condition, we consider a
random Neumann datum v0

N [mm · h−1] at the top of the soil column, assuming a uniform distribution in the range
[2,6] (moderate rainfall intensity). Using the canonical random variable ξ1 to parameterize v0

N, it comes

v0
N(ξ1) = 2 + 4ξ1, ξ1 ∼ U[0,1]. (25)

For the initial condition, we assume an uncertain initial saturation state ψ0 [cm] in the range [−120,− 80] with, again,
a uniform distribution; to enforce the independence between the uncertain boundary and initial condition, we use a
second canonical random variable ξ2 and write the initial condition as

ψ0(ξ2) = −120 + 40ξ2, ξ2 ∼ U[0,1]. (26)

The remaining boundary condition at the bottom of the domain is held equal to the initial condition, ψL
D(ξ2) =

ψ0(ξ2). As in the previous example saturated conductivity field Ks is also uncertain with log-uniform distribution
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and parametrized with a third independent canonical random variable ξ3 through

Ks(ξ3) = 10ξ3−4, ξ3 ∼ U[0,1]. (27)

The problem then involves independent uncertainty sources, whose individual effects can be appreciated from Fig. 11,
where the one-at-a-time analyses about the median value of the parameters (i.e. ξi = 1/2) are reported. It is seen that in
terms of individual effects the (upper) boundary condition mainly affects the location of the front, the initial condition
changes the solution in the lower part of the domain where it is spatially constant, and the saturated conductivity
principally changes the steepness of the front.
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Figure 11: One-at-a-time influence of uncertain boundary condition, initial condition and saturated conductivity field. Plotted are the solution for
the minimal, median and maximal values in the respective range of variation. Problem of Section 5.3.1.

For the PC-LP, we use the PSP method at levels ` = 2, . . . ,4 corresponding to a number of (Féjèr) nodes Np = 31,
111 and 351. From Fig. 11 we observe the structure of the solution, which is monotonically increasing w.r.t. z with
two plateaus at the two ends of the domain. This suggests an a priori discretization in levels that concentrate around
to 0 and 1 to obtain more evenly distributed level points in space, with lower interpolation error as a result. Following
this idea, we consider the Nl Chebyshev points of the unit interval,

vl := [1 − cos (lπ/(Nl + 1))] /2, ∀l = 1 · · ·Nl.

The Chebyshev discretization is contrasted with the case of the uniform discretization of [0,1] on the resulting error.
The errors ê(z) given by (23) are reported in Fig. 11 for Nl = 30 intermediate levels. The plots confirm the improve-
ment on the error brought by the non-uniform discretization, in particular at the bottom of the domain where the
solution is spatially constant. In contrast, we observe marginal improvements of the error when the level ` of the PSP
method increases. This finding suggests that the PC discretization error is dominated by the level discretization. This
is further confirmed by Fig. 13, which reports the errors for several numbers of level Nl and a fixed PSP-level ` = 3. It
is seen that the error decreases for both the uniform and non-uniform discretizations of the range when Nl goes from
20 to 40.

5.3.2. Non-homogeneous Ks

To complete the tests on the PC-LP method, we now turn to the case of an uncertain and non-homogeneous
saturated conductivity field Ks. The field is assumed to be stationary with a log-normal distribution, that is y(z,θ) :=
log(Ks(z,θ)) is a Gaussian stochastic process. The process y can be decomposed into the Karhunen–Loève expansion
(KLE) [8],

y(z,θ) = µy +

∞∑
i=1

√
λiyi(z)ηi(θ),

where µy is the mean of y, the couples {(λi,yi(z))} are the eigenpairs of the covariance function K(z,z′) of y, and
the ξi(θ) are uncorrelated standard Gaussian random variables. In practice, we rely on a piecewise linear numerical
approximation of the eigenfunction, consistently with the discretization of the pressure field, and a weak formulation
of the homogeneous Fredholm integral equation of the second kind satisfied by yi. In this work we use the square-
exponential covariance function

K(z,z′) := σ2
y exp

[
−

(
z − z′

)2 /
(
2l2c

)]
,
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(b) Chebyshev discretization

Figure 12: Error ê(z) for the uniform and Chebyshev discretization of the range and Nl = 30. The errors are reported for different PSP levels `.
Problem of Section 5.3.1.
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Figure 13: Error ê(z) for the uniform and Chebyshev discretization of the range and ` = 3. The errors are reported for Nl = 20, 30 and 40. Problem
of Section 5.3.1.

where σ2
y > 0 is the variance and lc is the correlation length of y that we set equal to L/8. In the following, we use

µy = −8.0179 and σ2
y = 0.3415, values that were selected such that Ks has the same mean and variance than in the

previous problems. Ordering the eigenvalues in decreasing order and truncating the KLE to the NKL dominant modes,
we obtain the following approximation

Ks(z,θ) ' KKL
s (z,θ) := exp

µy +

NKL∑
i=1

√
λiyi(z)ηi(θ)

 , (η1, . . . ,ηNKL ) ∼ N(0,I). (28)

In the remaining of the section we use NKL = 8 leading to a truncation error on y less than 1%. We finally set ξi+2 := ηi

such that with the uncertain boundary and initial conditions, the pressure head ψh(z,ξ) is parameterized with a total of
NKL + 2 = 10 independent random variables.

The constant (over the space domain) initial condition is not an equilibrium solution of the Richards’ equation and
the pressure head can lose monotonicity for non-homogeneous Ks. An immediate way to recover monotonicity is to
construct the PC-LP approximation of the hydraulic head, ψh(z)−z, which is almost surely monotonic and from which
the pressure head can be easily recovered. However, the monotonicity w.r.t. z of the QoI may be compromised by the
PC expansion of the level points, in particular when many levels are considered, due to external aliasing. This problem
is illustrated in Fig. 14. The plots in Fig. 14a and Fig. 14b compare for the same value of ξ the PC-LP solution using a
PSP grid with ` = 3 and 4 respectively, and the same number of levels Nl = 20. The effect of the external aliasing can
be seen with a spurious monotonicity loss for ` = 4 in the region with the highest gradient (see close-view sub-panels).
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Here, the complex interactions between the top boundary condition and the non-homogeneous Ks are responsible for
the external aliasing, and a larger PSP level would be necessary to eventually properly capture high order interactions
between the random inputs. To prove this point, we substitute the PSP method with a simple ordinary least squares
(OLS) method, based on the same set of PSP nodes and PC basis, in the construction of the level points. As seen
in the plot of Fig. 14c, the OLS approach is much less sensitive to external aliasing and presents a more satisfying
approximation. It will be used in the remaining numerical experiments.
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Figure 14: Illustration of the external aliasing in the PC-LP approximation with the PSP (left and center panels) and OLS (right panel) methods for
Nl = 20. Case of non-homogeneous Ks.

Fig. 15 presents the PC-LP approximations of the pressure head for Nl = 30 and the OLS method based on the
PSP nodes and basis at ` = 4. Compared are the approximations at the same value of ξ for a uniform (Fig. 15a)
and adapted (Fig. 15b) discretizations of the range. We observe that the uniform discretization of the range provides a
fairly faithful approximation, with sufficiently many level points in the bottom area z > 15, owing to the representation
of the hydraulic head. The largest error for the uniform discretization appears where the pressure head has the largest
curvature (in space) and the adaptive method indeed succeeds in reducing the error in these areas, see Fig. 15b.
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Figure 15: PC-LP approximations for the uniform and adapted level selection. Numerical parameters are Nl = 30, OLS-level ` = 4. Case of
non-homogeneous Ks.

The improvement brought by the adaptive method remains however limited as it can be appreciated from Fig. 16
depicting the error ê(z) given by (23). The adaptive approach better balances the error level in the spatial domain
but, contrary to the previous examples, the adaptivity does not bring significant error reduction. This is due to the
dominant contribution of the high-range value for the hydraulic head at the top boundary, i.e U+(ξ) in the notations
of Section 3, to the PC-LPM error. As U+(ξ) appears in the PC-LP approximation everywhere, see (13), its error is
felt for all x, even though its effect decays with the local level value v. The adaptation cannot recover from this error
which can be only reduced by increasing the quality of the PC approximation ofU+(ξ). As a result, for the range of
numerical parameters tested, the adaptivity improvement on the spatially integrated error Ê given by (24) is marginal,
as shown in Table 2. In addition, the adaptivity improvement decays with Nl, as the PC error becomes more and more
dominant.
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(a) Uniform discretization
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(b) Adapted discretization

Figure 16: Error ê(z) for the uniform and adapted level selection and Nl = 30. The errors are reported for the OLS method on PSP nodes and basis
of increasing levels ` = 2, 3 and 4. Case of non-homogeneous Ks.

Uniform discretization Adapted discretization
` Np |K| Nl = 20 Nl = 30 Nl = 40 Nl = 20 Nl = 30 Nl = 40

2 241 76 21.1 20.8 20.5 20.6 20.6 20.5
3 2001 416 9.22 8.67 8.57 8.84 8.61 8.59
4 13441 1966 7.28 6.93 6.89 7.00 6.86 6.83

Table 2: Integrated error Ê for number of levels Nl = 20, 30 and 40. The errors are reported for the OLS method on PSP nodes and basis of
increasing levels ` = 2, 3 and 4. The number Np of PSP nodes and the dimension |K| of the PC bases are also indicated. Case of non-homogeneous
Ks.

6. Conclusion

We have proposed a novel method based on level points (LP) and Polynomial Chaos (PC) expansion to approx-
imate one-dimensional uncertain fields. The construction involves a piecewise linear interpolation over a mesh cor-
responding to uncertain level points associated to selected level values. The resulting PC-LP method presents many
advantages. First, it is less susceptible to Gibbs phenomenon, even for steep or discontinuous dependences, provided
that level points are smoothly depending on the uncertain parameters. Second, for the examples considered in this
work, the method was shown to be more accurate and computationally more efficient than a direct polynomial chaos
approximation. In particular, low-order polynomial series can be used to approximate the stochastic LPs, requiring
a significantly reduced computational effort to construct the approximation, compared to direct PC expansion which
needs larger PC bases to yield similar accuracy. Also, the levels can be selected adaptively to minimize the interpola-
tion error, with further improvement of the computational efficiency. From the implementation standpoint, the method
is also attractive because the PC expansions of the LPs are non-intrusively computed; in fact, any non-intrusive strategy
can be used. Finally, the computational overhead for the evaluation and sampling of the approximation is marginal
unless the deterministic model is computationally cheap. Even when the adaptation of the levels is made for each
sample, the overhead would remain negligible as the adapted construction proceeds with the same set of deterministic
evaluations of the field, corresponding to the sparse grid nodes.

One essential limitation of the method is the requested (spatial) monotonicity of the field. This assumption can be
alleviated in situations where the number of level points associated with a level value is not dependent on the uncertain
parameters. Alternatively, one can handle non-monotonic situations by relying on (invertible) transformations of the
original field to recover monotonicity, as it was done in the heterogeneous soil problem where the approximation of
the hydraulic head (pressure head plus elevation head) has been considered instead of the pressure head. Another
important limitation concerns the restriction of the method to one-dimensional spatial fields. The generalization of
the level points to level curves and level surfaces appears as the main challenge to apply the method to fields in two
and three space dimensions, respectively. For groundwater flow applications, we are currently extending the PC-LP
method to 2 and 3 space dimensions, constraining the LPs to be along particular one-dimensional curves corresponding
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to the streamlines of a characteristic flow-field.
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