Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space

Edoardo Provenzi

Résumé

This is the first half of a two-part paper dealing with the geometry of color perception. Here we analyze in detail the seminal 1974 work by H.L. Resnikoff, who showed that there are only two possible geometric structures and Riemannian metrics on the perceived color space P compatible with the set of Schrödinger's axioms completed with the hypothesis of homogeneity. We recast Resnikoff's model into a more modern colorimetric setting, provide a much simpler proof of the main result of the original paper and motivate the need of psychophysical experiments to confute or confirm the linearity of background transformations, which act transitively on P. Finally, we show that the Riemannian metrics singled out by Resnikoff through an axiom on invariance under background transformations are not compatibles with the crispening effect, thus motivating the need of further research about perceptual color metrics.
Fichier principal
Vignette du fichier
Color_Geometry_Part1.pdf (457.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02336556 , version 1 (29-10-2019)
hal-02336556 , version 2 (17-03-2020)

Identifiants

  • HAL Id : hal-02336556 , version 1

Citer

Edoardo Provenzi. Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space. 2019. ⟨hal-02336556v1⟩
169 Consultations
356 Téléchargements

Partager

More