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Abstract

This is the first half of a two-part paper dealing with the geometry of color perception.
Here we will analyze in detail the seminal 1974 work by H.L. Resnikoff, who showed that
there are only two possible geometric structures and Riemannian metrics on the perceived
color space P compatible with the set of Schrördinger’s axioms completed with the hypothesis
of homogeneity. We will recast Resnikoff’s model into a more modern colorimetry setting and
motivate the need of a psychophysical experiment to confute or confirm the homogeneity
axiom for P. The second part of this paper will show how this problem can be circumvented
by reformulating Resnikoff’s theory in terms of Jordan algebras and quantum mechanical
concepts.

1 Introduction and state of the art

This first half of a two-part paper provides a thorough review and a critical analysis of the pioneer-
ing work of H.L. Resnikoff on color perception developed within the papers [13, 14, 15] and the
book [12]. These works are amongst the major inspirations for a modern program of re-foundation
of colorimetry that will be discussed in the second part of this paper, in which it will be shown
how to recast Resnikoff’s model in a quantum-like theory free from ambiguities.

Even if it may be surprising at first glance, Resnikoff belong to a vast ensemble of mathe-
maticians, physicists, biologists, philosophers and even poets who were fascinated by the concept
of color. The list is impressive, ranging from Plato to Wittgenstein, passing through Aristotle,
Descartes, Hook, Newton, Euler, Young, Helmholtz, Maxwell, Grassmann, Riemann, Goethe,
Schopenhauer, Locke, Weber, Fechner, Dalton, Hering and, last but not least, Schrödinger.

In fact, it is the research about the mathematical analogies between color (and, more general,
optics) and the oscillating behavior of quantum particles that led Schrödinger to propose the
famous equation which bears his name in quantum mechanics [19]. As it will be recalled in section
2, Schrödinger performed a synthesis of the most important findings about the mathematical
theory of color perception in a coherent set of axioms, introducing one of his own. This can be
thought as a psycho-physical counterpart of what Maxwell did for electromagnetism.

The experiments of Wright and Guild, see e.g. [24], could have paved the way for a further de-
velopment in the mathematical understanding of color perception, however, the recently founded
Commission Intérnational de l’Éclairage (CIE), took a more practical path by building up geomet-
rically flat color spaces which had the advantage to be much more easy to handle for engineering
purposes. While the XY Z space still stands today as a handy color space for colorimetry, its
developments until recent years, see e.g. [17], lacked of mathematical rigor and introduced ad-hoc
parameters to adapt newly discovered phenomena to the existing color space structures, instead
of modifying their geometry to fit the new observations.
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Resnikoff’s papers and book were written in the middle of the ’70s of the twentieth century,
about the same period when researchers in relativistic quantum field theory developed the stan-
dard model of fundamental physical interactions and when some first attempts to fuse quantum
mechanics and general relativity into a single theory have been proposed. This zeitgeist could
explain the reason why Resnikoff decided to use techniques which are quite common in theoret-
ical physics (as Riemannian geometry, homogeneous spaces, Lie groups and algebras) to study
color perception. In this sense, his achievements could be considered a very elegant example of
‘theoretical psycho-physics’.

In spite of its extreme originality and deepness, Resnikoff’s work remained practically unnoticed
until today, probably due to the fact that the mathematical knowledge needed to understand the
meaning of his findings is quite vast and does not belong to the typical mathematical background
of scientists working on colorimetry.

One of the aims of this paper is to rewrite Resnikoff’s results in more modern and pedagogical
terms, thus making them accessible to a wider range of researchers in colorimetry, vision science
and image processing.

A fundamental point in Resnikoff’s theory is the selection of a suitable group of transformations
G with respect to which the perceived color space is homogeneous. Resnikoff’s theory is supposed
to be linear, however, as he himself declared, the linearity of these maps is far from being obvious
or proven by experiments.

This remark will give us the opportunity to propose a novel psycho-physical experiment to
either confute or confirm linearity. Moreover, it will also motivate the reformulation of Resnikoff’s
theory based on Jordan algebras and quantum mechanical structures that will be discussed in
the second half of this two-part paper, with the evident advantage to be free from the need of
specifying G explicitly.

The paper is structured as follows: in the next section Schrördinger’s classical axioms for the
space of perceived colors will be recalled, along with the notation and the nomenclature that will
be used in the rest of the paper. Then, the homogeneity axiom will be introduced, along with the
analysis of its consequences.

The final part of the paper will deal with the invariant Riemannian metrics on the space of
perceived colors that can be singled out in a unique way and their relationship with existing color
distances.

2 Review of Schrördinger’s axioms for the space of per-
ceived colors

Let us begin by introducing the notation and nomenclature that will be used in the paper.

• Λ = [λmin, λmax] denotes the visual spectrum, the extrema of Λ are left unspecified because
their numerical value is not important and because there is no agreement about their precise
value. Typically, one chooses λmin = 380nm (extreme violet of the visual spectrum) and
λmax=780nm (extreme red).

• x : Λ→ R+: is the physical light function measured by an optical transducer, which will be
called physical light.

• In standard colorimetric tests, x is presented in a dim room to the ideal standard observer,
with an aperture angle of either 2 degrees (which correspond to foveal vision), or 10 degrees
(which allows extra-foveal vision). However, as we will see, x can also be presented as a
small central area seen against a uniform (or uniformly illuminated) background. In this
latter case we talk about color in (uniform) context. Experiments of color in non-uniform
context are still very rare, see e.g. [16], [8].
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• Color matching : the typical way to compare the perception of two physical lights is to divide
in two the field of view (creating what is called a bipartite field) and putting the two color
stimuli side-by-side. This can be performed with or without the presence of a context, but
in the latter case, the context must be the same for both color stimuli. It is important to
notice that it has been verified experimentally that many spectrally different physical lights
are perceived as the same color by humans [24].

• Since light stimuli have finite energy, i.e.
∫

Λ
x(λ)2 dλ < +∞, a physical light can be con-

sidered as an element of L2(Λ) ⊂ L1(Λ), where the inclusion holds because the Lebesgue
measure of Λ is finite. Since light stimuli are real-valued, L2(Λ) will be considered as a real
vector space and we set

L2
+(Λ) = {x ∈ L2(Λ), x(λ) ≥ 0}. (1)

• A spectral light stimulus xλ0
(λ) relative to the wavelength λ0 is a quasi-monochromatic visible

radiation for which there exist two values k, ε > 0 such that xλ0
(λ) can be approximated by

the following expression

x(λ) =

{
k if λ0 − ε < λ < λ0 + ε

0 otherwise.
(2)

• The so-called metamer equivalence ∼ can be stated like this:

x,y ∈ L2
+(Λ), x ∼ y ⇐⇒ x and y are perceived as identical,

the name is well posed, since ∼ has been empirically proven to be an equivalence relation
[4].

• The space of perceived colors is defined as:

P = L2
+(Λ)/ ∼ , (3)

the metamer equivalent class of x will be simply denoted by x:

x = [x]∼ . (4)

The algebraic operations of sum (superposition of lights) and multiplication by a positive
scalar can be passed from L2(Λ) to P simply by defining:

λ1x+ λ2y = [λ1x + λ2y]∼ , ∀λ1, λ2 ∈ R+, ∀x,y ∈ L2
+(Λ), (5)

where λx is the physical light x ∈ L2
+(Λ) modulated in its intensity by the coefficient λ ∈ R+

and x+y simply means superposition of physical lights. The 0 of P is the equivalent class of
physical lights whose intensity is so small that they do not activate the retinal photoreceptors.

• If we want to endow the quotient P of an algebraic structure, we must specify what it means
to perform a linear combination of light stimuli with real coefficients. This is related to
the concept of color matching in a bipartite field, as explained in detail by E. Dubois in its
excellent treatise [4]. Given a color stimulus x ∈ L2

+(Λ) and a real negative coefficient λ, we
interpret λx as the same light stimulus as (−λ)x but shown to the observer on the other side
of the bipartite field. This allows the definition of linear combinations with real, positive
and negative, coefficients and it is the correct way to interpret the famous Wright and Guild
experiments, see e.g. [24] or [17]. In these psycho-physical tests it is shown that either the
superposition of three light stimuli suffice to match a given color, or the superposition of
two light stimuli on one side of a bipartite field matches the superposition of the given color
and a light stimulus on the other side. This is the way in which the sentence ‘every color
stimulus can be matched by a linear combination of three spectral lights stimuli ’ has to be
interpreted.
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• The vector space of perceived colors: it is defined as the real span of P, i.e.

V = span(P), (6)

where the span is performed with respect to the linear structure described above, i.e. equality
in V is color matching and multiplication by a negative real number must be interpreted as
light superposition on the other side of a bipartite visual field in a color matching experiment.

With this notation, Schrödinger’s axioms, see [18], can be stated like this.

• Axiom 1 (Newton 1704, [11]) If x ∈ P and α ∈ R+, then αx ∈ P;

• Axiom 2 (Schrödinger 1920, [18]) if x ∈ P then it does not exist any y ∈ P, y 6= x, such
that x+ y = 0;

• Axiom 3 (Grassmann 1853, [7] & Helmholtz 1866 [21]) For every x, y ∈ P and for every
α ∈ [0, 1], αx+ (1− α)y ∈ P;

• Axiom 4 (Grassmann 1853, [7]) If xk ∈ P, then there exist αk ∈ R \ {0}, k = 1, . . . , 4, such

that
4∑
k=1

αkxk = 0.

Let us now discuss the colorimetric and mathematical meaning of the axioms, in particular,
mixing Axiom 1,2 and 4, we will come out with a finer version of Axiom 4.

Mathematically speaking, the meaning of Axiom 1 is simple: P is an infinite cone in V .
However, notice that Axiom 1 is an idealization: when α is very large, photoreceptors saturate
and when α is very small quantum effects and background noise will disrupt the relation input-
output which persists in photopic conditions.

Axiom 2 means that no superposition of perceived lights is perceived as the absence of light
(recall that the symbol + means additive synthesis of light stimuli). This assumption is true for
non-coherent light, as normal daylight, because it is well known that, for coherent light, destructive
interference can extinguish light intensity in certain spatial positions when two light beams are
superposed. Mathematically speaking, since x+ y = 0 is equivalent to x = −y, the axiom implies
that no x ∈ P can be written as the opposite of an element y ∈ P, y 6= x, i.e. that P does not
contain 1-dimensional vector subspaces.

Axiom 3 means that the line segment which joins the perceived colors x and y consists entirely
of perceived colors, thus P is a convex cone. This condition is well known to be equivalent to
be closed under conical convex combinations, i.e. linear combinations with positive coefficients
between 0 and 1 whose sum is 1.

This fact, along with Axiom 1, implies that P is closed under arbitrary linear combinations
with positive coefficients, in fact, for all α1, α2 ∈ R+ and x1, x2 ∈ P, 1

α1+α2
[α1x1 + α2x2] ≡ z is

a convex combination of elements of P, so z ∈ P thanks to Axiom 3, but then also (α1 + α2)z =

α1x1 + α2x2 ∈ P thanks to Axiom 1. By iterating this argument we have that
n∑
k=1

αkxk ∈ P

∀αk ∈ R+, xk ∈ P, k = 1, . . . , n.
Axiom 4 means that every collection of more than three perceived colors is a linearly dependent

family in the vector space V spanned by the elements of P, i.e. any 4 perceived colors are linearly
dependent with respect to the algebraic structure of V previously defined.

A finer version of Axiom 4 can be obtained with the following argument. First of all, notice
that Axioms 1-3 prevent the αk’s to have all the same sign. In fact, let us imagine that all the

coefficients α1, . . . , α4 are positive, then x̄ =
3∑
k=1

αkxk ∈ P (thanks to what just proven) and

ȳ = α4x4 ∈ P (thanks to Axiom 1), then
4∑
k=1

αkxk = 0 implies x̄ + ȳ = 0, which is impossible
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thanks to Axiom 2. A similar argument can be used when all the coefficients α1, . . . , α4 are
negative.

To resume, Axiom 1-4 imply this stronger version of Axiom 4.

Axiom 4’ For all quadruple of perceived lights xk ∈ P, k = 1, . . . , 4, there are coefficients

αk ∈ R, not all with the same sign, such that
4∑
k=1

αkxk = 0.

There are only two options coherent with Axiom 4’. The first option is that three coefficients
have the same sign and the remaining one has opposite sign. Since equality in V is color matching
and a negative coefficient means that the corresponding light stimulus must be shown on the other
side of the bipartite field, this means that one light stimulus color matches the superposition of
other three light stimuli.

In the second option, two coefficients are positives and two are negatives: this means that the
superposition of two lights stimuli color match the superposition of other two lights stimuli. This
case has been already established by the already quoted experiments of Wright and Guild [17].

Another direct consequence of Axiom 4 is that dim(V ) ≤ 3, in particular, we call observer for
which:

• dim(V ) = 3: trichromate;

• dim(V ) = 3: dichromate;

• dim(V ) = 1: monochromate;

• dim(V ) = 0: blind.

Following [2], we can define the following projection map

π : L2
+(Λ) −→ P
x 7−→ x,

(7)

which implies that infinitely many spectrally different lights coincide perceptually.
In what follows, we will fix our attention only on the trichromatic case, i.e. from now on,

dim(V ) = 3.

3 Resnikoff’s homogeneity axiom for P
As stated in the introduction, in [13] Resnikoff used the theory of homogeneous spaces to study
the geometry and the metrics of the perceived color space P. Notice that this is far from being
a trivial task, since the metamer equivalence classes that make up P are very difficult objects to
characterize from a mathematical point of view. Thus, a theory of P which bypasses the use of
metamer equivalent classes is highly desirable.

Before going through the details of his analysis, it is worth recapping the definition of homo-
geneous space.

If X is a topological space and G is a group of transformations acting on it, G × X → X,
(g, x) 7→ g(x), then X is a G-homogeneous space if, for any two points x, y ∈ X, there exists a
transformation g ∈ G such that g(x) = y, i.e. any two points of X can be joined by a suitable
transformation g of G, otherwise stated, the action of G on X is transitive (there is only one G
orbit). X is locally homogeneous with respect to G if this property holds only locally, i.e. if for
every x ∈ X there is an open neighborhood Ux of x such that every x′ ∈ Ux can be written as
x′ = g(x) for a certain g ∈ G.

The motivation to introduce homogeneous spaces comes from Weber-Fechner’s law [24], which
states that the perceived intensity, called brightness, b(x) of x ∈ P is proportional to log x (for a
wide range of intensities), thus, the relative brightness b(x1)− b(x2) between x1 ∈ P and x2 ∈ P
will be proportional to log(x1)−log(x2) = log(x1

x2
) = log(λx1

λx2
) for all positive coefficient λ belonging
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to the (wide) range of values for which Weber-Fechner’s law is valid. This explains why the relative
brightness is invariant under the simultaneous modification of light expressed by

x1 7→ λx1, x2 7→ λx2, λ > 0. (8)

The set of all possible light intensities (we do not consider here the option of absence of light) can
be identified with R+ = (0,+∞), which is both a topological space and a group with respect to
the ordinary multiplication of positive real numbers. The very simple observation that

∀x, y ∈ R+, x 6= 0, y =
y

x
x ≡ λx, (9)

shows that R+ is a R+-homogeneous space. The previous remark about brightness perception
implies that the relative brightness between two perceived lights is a R+-invariant function defined
on R+.

What is crucial here is that, up to a selection of unit of measurement, Weber-Fechner’s law
defines the unique R+-invariant metric on R+, i.e.

d(x1, x2) = log(x1)− log(x2) = log
x1

x2
, x1, x2 ∈ R+. (10)

The purpose of Resnikoff’s paper [13] is to generalize this argument to the entire color space in order
to single out metrics by using invariance properties of human vision. The major phenomenological
evidences to believe that the entire color space is homogeneous with respect to the action of some
group is color constancy [5], i.e. the robustness of the human visual system to perceive color (and
not only light intensity) with respect to different illuminants. This property is essential for the
stability of our vision, in fact, without it, we should relearn color relationships among objects each
time we change the illumination of a scene. Color constancy is actually one of the first features
that is needed in any model of robot vision, video-surveillance, to quote but a few applications.

The remainder of Resnikoff’s paper [13] is devoted to the mathematical development of a theory
of color perception based upon the presumed homogeneity of color space. Here we must underline
that the observational arrangement considered by Resnikoff is that of color in a uniform context.
As we will see, the presence of this context is crucial for the development of his theory.

The first information that we need is relative to the group of transformation with respect to P
is (supposed to be) homogeneous. Resnikoff proposed the group GL+(P) of orientation-preserving
linear transformations of V which preserve the cone P, i.e.

GL+(P) := {B ∈ GL(V ) : det(B) > 0, and B(x) ∈ P ∀x ∈ P}, (11)

where GL(V ) is the group of invertible linear operators on V , which can be identified with the
group of real n×n matrices with determinant different from zero, where n = dim(V ) = 3. GL(V )
is the complementary set in M(3,R) ' R9 of det−1(0), the counter-image of 0 by the determinant
function, which is continuous in the Euclidean topology, thus det−1(0) is closed and so GL(V ) is
an open subset of R9 with respect to the Euclidean topology.

In [13], the transformations B ∈ GL+(P) are called ‘changes of background illumination’,
however, here they will be simply called changes of background, without specifying ‘illumination’,
because this can be reductive since a background change can be also performed by a modification
of its reflectance.

Let us now introduce the idea behind the homogeneity axiom. It is known that any perceived
color x ∈ P can be transformed into any ‘sufficiently near’ one y ∈ P by an appropriate change of
background, see Figure 1 for a graphical representation.

For this reason Resnikoff postulates that P is a local homogeneous space with respect to the
group GL+(P). Notice that this is not a physical property of color, but a perceptual feature of
human vision, usually referred to as chromatic induction, see e.g. [22, 16, 8] for more details about
how induction can be measured.
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Figure 1: The two disks are exactly the same, however, the first one is perceived as yellowish
because of its background.

Thus, for every x ∈ P, there exists an open neighborhood Ux ⊂ P such that each y ∈ Ux can
be expressed as y = B(x) ∈ P for some B ∈ GL+(P), so every point of P is an interior point,
i.e. P is open in V and therefore it inherits the structure of a differentiable manifold from V 1.
With respect to this differential structure, each transformation B ∈ GL+(P), B : P → P, is a
diffeomorphism.

Let us now consider local homogeneity in conjunction with Axiom 3, i.e. with the convexity
of P: for every couple of perceived colors x, y ∈ P there exists the line segment L that joins x to
y. L is a compact subset of P and local homogeneity assures that, for any z ∈ L there exists an
open neighborhood Uz ⊂ P that is a homogeneous space with respect to the group GL+(P). As
we move z in L, we obtain the open covering

⋃
z∈L

Uz of L, and, by definition of compactness, we

can extract a finite open covering of L from it, i.e. there exist x1, . . . , xn ∈ L, n < +∞, such that
n⋃
k=1

Uxk is an open covering of L.

Let Bk ∈ GL+(P) be the change of background transformation which carries xk to xk+1,
where k = 1, . . . , n − 1, x0 ≡ x and xn ≡ y, then, since GL+(P) is a group, the transformation
B ≡ Bn ◦Bn−1 · · · ◦B1 carries x to y, i.e. y = B(x), for every couple of perceived lights x, y ∈ P.

Thus, Axiom 3 implies that local homogeneity is equivalent to global homogeneity and, for this
reason, Resnikoff is led to postulate his own fifth axiom on the structure of the color space.

Axiom 5 (Resnikoff 1974, [13]): P is a GL+(P)-homogeneous space.

Homogeneous spaces have many useful properties that Resnikoff used to determine the geomet-
rical structure of P and to single out invariant measures on it. However, we postpone this analysis
after an interlude in which we discuss the important issue of linearity for the transformations B ∈
GL+(P).

3.1 A psycho-physical analysis of background transformations

In this subsection we analyze in deeper detail the properties of the transformations B ∈ GL+(P).
The fact that B is required to be orientation-preserving is needed to maintain intensity relations
when perceived colors differ only by positive scalar, i.e. only in brightness. Geometrically speaking,
an orientation-preserving transformation respects the direction of each generatrix of the cone P.

The requirement that the cone P must be preserved is natural too, because after a change
of background a perceived color remains a perceivable, thus, if B ∈ GL+(P) and x ∈ P, then
B(x) ∈ P.

The transformation must be invertible, because once the reverse change of background is
performed, the perceived color returns the original one.

However, there are two main issues related to the background transformations that must be
discussed.

The first is that, from an operative point of view, it is not evident how it is possible to pass from
any fixed perceived color x ∈ P to an arbitrary other y ∈ P with a background change. In fact,

1V , as a real vector space, is naturally endowed with the Euclidean differential structure.
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to the best of our knowledge, the literature about color induction from a change of background
illumination is quite limited and almost entirely confined to achromatic stimuli [22], [16].

The second issue is that it is not clear why the transformations B should be linear. Resnikoff
himself, in the paper [14] declared it to be ‘the least verified aspect ’ of the group of transformations
that he selected to act on P.

Linearity means that

B(αx+ βy) = αB(x) + βB(y), ∀α, β ∈ R, ∀x, y ∈ P, (12)

where B is any change of background. As usual, equality means color match and terms with
negative coefficients must be transferred on the other side of the equality and the resulting equation
must be interpreted via a color matching procedure.

We propose hereafter a psycho-physical experiment to check the linearity of background trans-
formations. Let us start considering additivity : an experiment of color matching is needed to test
if B(x+ y) color matches B(x) +B(y). Fig. 2 gives a handy depiction of the experiment.

Figure 2: The experimental setup depicted in the figure can be used to check the additivity of
background transformations.

• Measure of B(x + y). Let us choose two reference colors x and y, e.g. represented by the
perception of two Munsell chips with respect to the same background b. Let x and y the
physical light which color-matches x and y, respectively. Then, we perform a change of
background, mathematically modeled by a transformation B ∈ GL+(P), from b to b′. The
color sensation generated by the superposition x + y in the context b′ is B(x+ y) ∈ P.

• Measure of B(x) + B(y). We show the Munsell chip originally associated with x in the
modified context b′ and we color-match the new color sensation B(x) ∈ P with the physical
light x′. We repeat this procedure for y, color-matching B(y) ∈ P with the physical light
y′.

8



If the color sensations produced by x + y in the background b′ matches that produced by x′ + y′

in the same background, then the change of context is additive.
To test homogeneity we can use a similar procedure to verify if B(αx) = αB(x), for at least a

sufficiently large class of coefficients α ∈ R+.
Unless psycho-physical experiments are carefully carried out to confirm or to confute the lin-

earity hypothesis, this one remains a conjecture for Resnikoff’s model.
In what follows the linearity of the transformations B will be assumed. However, it must be

clear that, if the linearity hypothesis turned out to be false, then the mathematical foundation of
the results that we are going to discuss will be lost.

4 Consequences of the homogeneity axiom on the geomet-
rical structure of P

First of all, we remark that GL+(P) is an open subgroup of GL+(V ), thus it inherits the structure
of Lie group from it. Secondly, let us consider the subgroup of GL+(P) defined by K = {B ∈
GL+(P) : B(x) = x}, where x ∈ P is fixed. K is called the stabilizer, of isotropy subgroup of
GL+(P) and it is known to be compact.

This general result of the theory of homogeneous spaces, see e.g. [9], [10], will be fundamental
during this section: if a differential manifold X is G-homogeneous space w.r.t the action η :
G × X → X of the Lie group G, then the map β : G/K → X defined by β(gK) = η(g, x) is a
diffeomorphism for every fixed x ∈ X.

In our case, this means that we can write the diffeomorphic identification:

P ' GL+(P)/K. (13)

By Axiom 1, the transformation α 7→ αx, α ∈ R+, preserves P, it follows that every B ∈ GL+(P)
can be uniquely expressed in the form αB′, where α ∈ R+ and B′ ∈ SL(P), where SL(P) is the
subgroup of GL+(P) given by the matrices of this group with determinant 1.

It follows that GL+(P) = R+×SL(P), i.e.

P ' R+ × SL(P)/K, (14)

and that K can be identified with2 a compact subgroup of SL(P), which is a subgroup of SL(n,R),
n = 1, 2, 3, accordingly to Axiom 4.

For the trichromatic case n = 3, we have dim(SL(3,R)) = 8, so

3 = dim(P) = dim
(
R+ × SL(P)/K

)
= dim(R+) + dim (SL(P)/K) = 1 + dim(SL(P))− dim(K),

(15)

but, since SL(P) � SL(3,R), dim(SL(P)) ≤ dim(SL(3,R)) = 8, we have that

dim(SL(P)) = 2 + dim(K) ≤ 8. (16)

As proven in [13], the contractibility of P implies the existence of a semi-simple Lie group S and
nilpotent Lie groups Tni , i = 1, . . . , k, ni ∈ N, such that

SL(P) ' S × (Tn1
× · · · × Tnk) , (17)

where the elements of Tni are upper triangular matrices of the form

Tni =




1 αµν
. . .

0 1

 : αµν ∈ R+, 1 ≤ µ < ν ≤ ni

 , (18)

2In fact, the isotropy subgroup of R+ is evidently {1} and R+/{1} ' R+, thus the only non trivial part of the
quotient operation is on a compact subgroup K of SL(P).
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whose dimension is dim(Tni) = ni(ni−1)
2 , thus

dim(SL(P)) = dim(S) + dim(Tn1 × · · · × Tnk) (19)

and

dim(S) +

k∑
i=1

ni(ni − 1)

2
= 2 + dim(K) ≤ 8. (20)

The dimensionality constraints discussed above imply that we must consider only the following
case: 2 ≤ ni ≤ 4 for all i, in fact, dim(T2) = 1, dim(T3) = 4, dim(T4) = 6.

The groups Tni do not have compact subgroups, so K must necessarily be a subgroup of the
semi-simple group S and it must verify the constraint (20). The only semi-simple groups S which
are, a priori, coherent with this dimensionality constraint are the following:

S =


∅, with dimension 0

SL(2,R), with dimension 3

SL(2,R)× SL(2,R), with dimension 6

SL(3,R), with dimension 8

(21)

however, the last two options cannot be accomplished in practice. To understand the reason why,

let us consider the case S = SL(3,R), then (20) implies 8 +
∑k
i=1

ni(ni−1)
2 = 2 + dim(K) ≤ 8,

so that dim(K) = 6, but this is not possible because the maximal compact subgroup of SL(3,R)
is SO(3), which has dimension 3, thus the dimension of K cannot be 6 and we must discard the
option S = SL(2,R). This argument can be used to reject also the option S = SL(2,R)×SL(2,R),
thus we are left only with the first two options: either S = ∅ or S = SL(2,R), let us analyze the
two cases separately.

If S = ∅, then K = ∅ and (20) reduces to
k∑
i=1

ni(ni−1)
2 = 2, with unique solution n1 = n2 = 2.

By recalling that dim(Tni) = ni(ni−1)
2 , it follows that dim(T2) = 1, so the triangular matrices T2

are labeled by one real positive parameter:

{
T2 =

(
1 p
0 1

)
, p ∈ R+

}
' R+, hence SL(P)/K '

T2 × T2 ' R+ × R+, thus:

P = GL+(P)/K ' R+ × SL(P)/K ' R+ × R+ × R+. (22)

Instead, if S = SL(2,R), then dim(S) = 3 and (20) becomes

k∑
i=1

ni(ni − 1)

2
= dim(K)− 1 ≤ 5. (23)

The compact subgroupsK of SL(2,R) are either isomorphic to the trivial subgroup

{
I2 =

(
1 0
0 1

)}
,

which has dimension 0 (since it has no free parameters), or to the special orthogonal group SO(2):

SO(2) =

{(
cosϑ sinϑ
− sinϑ cosϑ

)
, 0 ≤ ϑ ≤ 2π

}
, (24)

which has dimension 1, since it can be parameterized by the single variable ϑ. In the first case
(23) implies

k∑
i=1

ni(ni − 1)

2
= 0− 1 = −1 ≤ 5, (25)

which cannot be satisfied by any choice of ni. Instead, in the second case, eq. (23) implies

k∑
i=1

ni(ni − 1)

2
= 1− 1 = 0 ≤ 5, (26)
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which is satisfied by choosing all the ni = 0. This corresponds to

P = GL+(P)/K ' R+ × SL(P)/K ' R+ × SL(2,R)/SO(2). (27)

Summarizing: Axioms 1−5 imply that P is a homogeneous space equivalent to either

P1 ' R+ × R+ × R+ (28)

or
P2 ' R+ × SL(2,R)/SO(2). (29)

The first characterization embodies the well-known colors spaces with three separated chromatic
coordinates, e.g. LMS, RGB, XY Z, and so on, see e.g. [6]. The second characterization
is novel and it introduces the Poincaré-Lobachevsky 2-D space of constant negative curvature
SL(2,R)/SO(2) in color theory.

5 Selection of invariant Riemannian metrics for the color
spaces P1 and P2

Once Resnikoff established the only possible geometrical structure of P compatible with the Ax-
ioms 1-5, he searched for Riemannian metrics on P to measure color dissimilarity. As for the
geometry of P, he uniquely singled out the metrics thanks to an invariance principle.

We recall that a Riemannian metric g on a differentiable manifold M of dimension n is a
symmetric positive-definite tensor field of type (0, 2) on M , i.e. a correspondence which assigns,
smoothly with respect to each point x ∈ M , a scalar product gx : TxM × TxM → R, (X,Y ) 7→
gx(X,Y ) for all X,Y ∈ TxM , the tangent space to M in x. A differentiable manifold M embedded
with a Riemannian metric g is called a Riemannian manifold (M, g).

A Riemannian manifold (M, g) is also a metric space with respect to a distance canonically
induced by g and defined with the help of the length of piecewise regular curves γ : [0, 1]→M . If
(M, g) is a connected Riemannian manifold, then, if we define the length of the curve γ as

L(γ) =

∫ 1

0

‖γ̇(u)‖γ(u) du, (30)

then the function d : M ×M → R+ defined by

d(x, y) = inf{L(γ), γ : [0, 1]→M piecewise regular, γ(0) = x, γ(1) = y} (31)

is a distance on M , called the Riemannian distance on M induced by the Riemannian metric g.
Any piecewise regular curve γ in M which minimizes the Riemannian distance between a pair

of points x, y ∈ M is said to be a geodesic connecting the two points. Thus, the Riemannian
distance d(x, y) can be defined as the length of any geodesic connecting x to y.

In the study of the color space M ≡ P. Since Axioms 1-5 determine the geometric structure of
P as a homogeneous space, Resnikoff claimed that it is totally natural to search for a Riemannian
metric on P coherent with these axioms.

Let x, y ∈ P be two perceived colors with respect to the same background b and let us perform a
change of background, from b to b′ 6= b modeled by the transformation B : P → P, B ∈ GL+(P).
Then x′ = B(x) and y′ = B(y) will be the lights x and y perceived in the new background b′.

The assumption that the perceptual dissimilarity between x and y is the same as that between
x′ and y′ can be formalized in the sixth axiom.

Axiom 6: If d : P × P → [0,+∞) is the Riemannian distance on P that measures perceptual
differences between pairs of perceived lights x, y ∈ P, then d must satisfy

d(B(x), B(y)) = d(x, y), ∀x, y ∈ P, ∀B ∈ GL+(P), (32)
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i.e. d must be GL+(P)-invariant. From now on such a distance d will be called a perceptual color
metric.

The request of GL+(P)-invariance singles out in a unique way the perceptual color metric for
each of the two geometrical structures of P, let us see how. First of all, the diffeomorphism B ∈
GL+(P), B : P → P, induces a linear isomorphism on the tangent space TxP, for every x ∈ P,
via the differential map: dxB : TxP → TB(x)P, this allows us to introduce the push-forward
Riemannian metric B∗g on P via the equation:

B∗gB(x)(dB(X), dB(Y )) = gx(X,Y ), ∀B ∈ GL+(P), ∀X,Y ∈ Tx(P). (33)

Now it is essential to recall two results that we have discussed above: the first is that P can
conveniently be identified with the homogeneous space GL+(P)/K and the second is that GL+(P)
is transitive on P, so if we fix any arbitrary point x ∈ P, we can reach any other point y ∈ P via
the action of a transformation of the group, i.e. y = Bx for some B ∈ GL+(P).

Let us chose, in particular, as element x ∈ P ≡ GL+(P)/K the equivalent class to which the
identity transformation of GL+(P) belongs, i.e. the coset K itself. In this case, by definition,
we have B(x) = x ∀B ∈ K and, thanks to the just recalled transitivity, this K-invariance is
independent on the choice of x, thus eq. (33) can be re-written as

B∗gx(dB(X), dB(Y )) = gx(X,Y ), ∀B ∈ K, ∀X,Y ∈ Tx(P). (34)

The quest for perceptual color metrics on P is thus reduced to the much simpler task of searching
for K-invariant metrics for the spaces P1 and P2 defined in eqs. (28) and (29), respectively.

For P1 = R+ × R+ × R+, we saw in the previous section that K = ∅, and so K-invariance
does not introduce any constraint. However, the metric must be the sum of R+-invariant metrics
on each factor and all R+-invariant metrics on R+ are proportional: once we have identified one
such metric, all the others are positive multiples of it.

It is clear that a R+-invariant metric on R+ is given by ds2 =
(
dx
x

)2
, thus the general

perceptual color metric on P1 is

ds2 = α1

(
dx1

x1

)2

+ α2

(
dx2

x2

)2

+ α3

(
dx3

x3

)2

, αk ∈ R+, k = 1, 2, 3, (35)

which is precisely Stiles’ generalization of Helmholtz’s metric (this last one corresponds to the
particular case α1 = α2 = α3 = 1), see e.g. [24].

Let us now turn our attention to P2 = R+ × SL(2,R)/SO(2), in this case, as discussed in the
previous section, K = SO(2), so that the tangent space of P2 at any x ∈ P2 is

TxP2 = R⊕ TKSL(2,R)/SO(2), ∀x ∈ P2. (36)

Thus, in this case, K-invariance means invariance under rotations, it follows that the perceptual
color metric for this realization of P must be the sum of a 1-dimensional and 2-dimensional
Euclidean metrics, thus, also for P2, the perceptual color metric is unique up to the selection of
units of measure on each Cartesian factor R+ and SL(2,R)/SO(2).

Let us give an explicit characterization of the metric on P2. First of all, we recall that
SL(2,R)/SO(2) is isomorphic to the set N of 2 × 2 real symmetric positive-definite matrices
with determinant 1. If we denote with x a generic 2 × 2 real symmetric positive-definite matrix,
then its determinant will be positive but not necessarily unitary, however, writing x = det(x) x

det(x)

we can see that
P2 ' R+ ×N , (37)

i.e. P2 is isomorphic to the set of 2 × 2 real symmetric positive-definite matrices and GL+(P2)
can be identified with GL(2,R) = R+ × SL(2,R).
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The action of GL(2,R) on P is given by GL(2,R)× P → P, (A, x) 7→ AxAt ≡ B(x), and the
GL(2,R)-invariant distance on P is3

ds2 =
1

2
Tr(x−1dxx−1dx), (38)

Tr being the trace function. ds2 is equivalent to the Rao-Siegel metric [1, 3, 20].

Let us verify the GL(2,R)-invariance: first of all notice that B(x)−1 = (At)
−1
x−1A−1 and

that, by linearity, dB(x) = AdxAt. So

Tr(B(x)−1dB(x)B(x)−1dB(x)) = Tr((At)
−1

x−1A−1AdxAt(At)
−1

x−1A−1AdxAt)

= Tr((At)
−1

x−1dxx−1 dxAt),
(39)

by using the cyclic property of the trace we have

Tr(B(x)−1dB(x)B(x)−1dB(x)) = Tr(At(At)
−1
x−1dxx−1 dx)

= Tr(x−1dxx−1 dx),
(40)

∀B ∈ GL(2,R), thus confirming the GL(2,R)-invariance.

6 The analysis of brightness perception in Resnikoff’s model

A noticeable application of the perceptual color metric is the analysis of brightness perception. For
the sake of clarity, we will divide the analysis in three separated subsection dedicates, respectively,
to brightness difference, iso-surface brightness and the dependence of brightness on color.

6.1 Brightness difference

If x is a physical light and λ > 0, then, in the configuration considered by Resnikoff (stimulus
over a uniform background), x and λx will produce two sensations of color x and λx, respectively,
which will differ only by their intensity, called brightness difference.

Accordingly to the perceptual color distance d, the brightness difference should be measured
by

d(x, λx) =

∫ λx

x

ds, (41)

where the integral is taken over a geodesic arc connecting x to λx and d(λx) = λdx. For P1, i.e.

if we consider the distance (35) given by ds2 =
3∑
k=1

αk

(
dxk
xk

)2

, we have:

d(x, λx) =

∫ λ

1

√√√√ 3∑
k=1

αk
dt

t
=

√√√√ 3∑
k=1

αk | log(λ)|, (42)

i.e. the difference in brightness is proportional to the logarithm of intensity difference, which is
exactly Weber-Fechner’s law [24].

For P2, i.e. if we consider the metric (38), then we have:

d(x, λx) =
1√
2

∫ λ

1

√
Tr

(
1 0
0 1

)
dt

t
= | log(λ)|, (43)

again, the coherence with Weber-Fechner’s law is verified.

3Resnikoff considered a normalized metric without the coefficient 1/2. Here, we re-introduce this factor to show
more explicitly the correspondence with a result of the second half of this two-part paper.
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The problem gets much more complicated if we consider the brightness difference induced by
light stimuli which differ also with respect to their chromatic attributes (hue and saturation), and
not only in intensity.

If b(x, y) is the brightness difference between two arbitrary elements x, y ∈ P, then b(x, y)2 ≤
d(x, y)2 since b measures only the brightness difference, while d measures also the hue and satu-
ration diversity between perceived colors.

To simplify the notation, it is convenient to write the two geometrical structures of P in a
compact way as P ' R+ ×M, where

M =

{
R+ × R+ for P1

SL(2,R)/SO(2) for P2.
(44)

Then x ∈ P can be written as

x ≡ (x1, x2, x3) = (ξ, u), ξ ∈ R+ and u ≡ (u1, u2) ∈M. (45)

Let us first discuss the case M = R+ × R+. A convenient explicit parameterization choice
that allows us to exhibit the product structure of P1 by splitting the Riemannian distance in two
terms, each of which corresponds to one Cartesian factor, is the following:

ξ = (xα1
1 xα2

2 xα3
3 )1/3 (a sort of geometric average of the xi’s)

u1 =
xσ1
ξ

u2 =
xσ2
ξ ,

(46)

where σ = α1+α2+α3

3 is the arithmetic average of the αi’s.
By direct computation, it can be verified that, in these coordinates, the distance (35) verifies

the equation

σ2ds2 = 3σ

(
dξ

ξ

)2

+

[(
α1 +

α2
1

α3

)(
du1

u1

)2

+
2α1α2

α3

(
du1

u1

)(
du2

u2

)

+

(
α2 +

α2
2

α3

)(
du2

u2

)2
]
.

(47)

The effect of a brightness change x 7→ λx, λ > 0, on the parameterization chosen above is the
following:

(x1, x2, x3) 7→ (λx1, λx2, λx3) =⇒ ξ 7→ λ
α1+α2+α3

3 ξ = λσξ, (48)

which implies

uj 7→
λσxσj
λσξ

= uj , j = 1, 2, (49)

i.e. the coordinates uj are independent on the transformation x 7→ λx. Since the dependence
of ds2 is split into ξ and u1, u2, and since, as just proven, a brightness change only affects the ξ
coordinate, the parameterization (46) allows us to express a brightness change entirely in terms
of the ξ coordinate.

Let us now consider P2, identified with the set of positive definite 2×2 real symmetric matrices(
x1 x3

x3 x2

)
. In this case M = SL(2,R)/SO(2) and we will show that a suitable parameterization

is the following: 
ξ = det(x)1/2

u1 = x3

x2

u2 = ξ
x2
.

(50)
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By direct computation, we obtain

x = ξ

u2
1+u2

2

u2

u1

u2

u1

u2

1
u2

 (51)

and the general perceptual Riemannian distance becomes

ds2 = α1

(
dξ

ξ

)2

+ α2

[
(du1)2 + (du2)2

u2
2

]
, (52)

α1, α2 > 0.
Let us consider a brightness change and its effect on this parameterization: since det(λx) = λ2

det(x), then a change of brightness x 7→ λx induces the transformation ξ 7→ λξ, which explains
the presence of the square root in the definition of ξ. Thanks to this observation, directly from
the formulae of u1, u2 in (50), it follows that these coordinates are unaffected by a change of
brightness. Thus, again, a brightness difference is expressed only in terms of the ξ coordinate
when the suitable parameterization (50) is chosen.

Due to these considerations, in the Resnikoff model, it is natural to define the relative brightness
between two perceived colors x, y ∈ P, x = (ξ, u), y = (η, v), in the coordinate system (46) or
(50), as follows

b(x, y) = χ

∫ ξ

η

dt

t
= χ log

ξ

η
, (53)

where χ is a constant introduced to make this definition coherent with the ones given above in
eqs. (42) and (43), when x and y are proportional via a positive constant.

6.2 Surfaces of constant brightness

The equations that we introduced so far have been used by Resnikoff to study the geometry of
surfaces of constant brightness, or iso-brightness surfaces.

Let c ≡ (γ, v) ∈ P be a reference color and write with b(x, c) the brightness of x ≡ (ξ, u) w.r.t.
that of c4.

As usual, we start with P1 = R+×R+×R+: according to (53), the brightness of x relative to c is

b(x, c) = χ log
ξ

γ
, χ ∈ R constant, (54)

so the surface of constant brightness β is the set of x ∈ P satisfying b(x, c) = β, i.e. taking into
account (46),

χ log

(
xα1

1 xα2
2 xα3

3

γ

)1/3

= β ⇐⇒ xα1
1 xα2

2 xα3
3 = γe3β/χ = constant. (55)

These are the same surfaces of constant brightness found by Stiles, which are isomorphic to
M' R+ × R+, coherently with the fact that P1 is the standard colorimetric space.

The most interesting results are provided by the analysis of P2 = R+×SL(2,R)/SO(2): this time,
taking into account (50), we find5

χ log
det(x)1/2

γ
= β ⇐⇒ det(x) = γ2e2β/χ = constant. (56)

4A remark is necessary about this sentence: even if Resnikoff does not explicitly mention the presence of a
background in [13], if we want to be coherent with the formalism introduced so far, we must interpret c and x as
the color sensations induced by two light stimuli embedded in the same fixed uniform background.

5In Resnikoff’s paper [13] there is a typo: γ appears without the square.
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Since x =

(
x1 x3

x3 x2

)
, det(x) = x1x2 − x2

3 and so the iso-brightness equation for the model P2 is

x1x2 − x2
3 = constant, which is the equation of a hyperboloid.

Interestingly, both Yilmaz [25] and Weinberg [23] show iso-brightness surfaces which are in
favor of the model P2, rather than a flat surface.

6.3 Dependence of brightness on color

Here β will not be considered as a constant anymore, but a function of the color variable x. If we

replace β with β(x) in the formula χ log det(x)1/2

γ = β, i.e. we write χ
2 log det(x)− χ log γ = β(x),

and we choose for simplicity γ = χ/2 = 1, then we have

β(x) = log det(x) ⇐⇒ eβ(x) = det(x). (57)

x ∈ P is a positive-definite symmetric real 2 × 2 matrix, thus it can be diagonalized with two
positive eigenvalues on the diagonal and, moreover, we can consider the principal square root
x1/2 ∈ P of x, i.e. the only positive-definite symmetric real 2× 2 matrix such that x1/2x1/2 = x.
x1/2 is invertible, its inverse matrix will be denoted with x−1/2.

If we consider another y ∈ P, then, if 1 is the identity 2× 2 matrix, we have

x+ y = x1/2x1/2 + 1y1 = x1/2x1/2 + x1/2x−1/2yx−1/2x1/2

= x1/2[x1/2 + x−1/2yx−1/2x1/2] = x1/2[1 + x−1/2yx−1/2]x1/2,
(58)

thus, using eq. (57), we can write

eβ(x+y) = det(x+ y) = det(x1/2[1 + x−1/2yx−1/2]x1/2). (59)

If we set u = x−1/2yx−1/2 ∈ P, then

eβ(x+y) = det(x1/2[1 + u]x1/2) = det(x1/2)det(1 + u)det(x1/2)

= det(x1/2)det(x1/2)det(1 + u) = det(x1/2x1/2)det(1 + u)

= det(x)det(1 + u).

(60)

u is positive definite and symmetric by construction, thus its eigenvalues λ1, λ2 are positive. The
determinant is invariant under changes of basis, thus we can consider the basis where u is diagonal
and compute:

det(1 + u) = det

(
1 + λ1 0

0 1 + λ2

)
= 1 + (λ1 + λ2) + λ1λ2 = 1 + Tr(u) + det(u),

so, thanks to the cyclic property of the trace and Binet’s theorem, we get

eβ(x+y) = det(x)(1 + Tr(u) + det(u))

= det(x)
(

1 + Tr(x−1/2yx−1/2) + det(x−1/2yx−1/2)
)

= det(x)
(

1 + Tr(x−1/2x−1/2y) + det(x−1/2)det(x−1/2)det(y)
)

= det(x)
(
1 + Tr(x−1y) + det(x−1)det(y)

)
= det(x)

(
1

det(y)
+

1

det(y)
Tr(x−1y) +

1

det(x)

)
det(y)

= eβ(x)

(
1

det(y)
+

1

det(y)
Tr(x−1y) +

1

det(x)

)
eβ(y),

(61)
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where we used again eq. (57) in the last step. By taking the logarithm at both sides and rearranging
the terms we obtain

β(x+ y) = β(x) + β(y) + log

(
1

det(x)
+

1

det(y)
+

Tr(x−1y)

det(y)

)
. (62)

Since every mapping in GL(P) = R+× SL(2,R)/SO(2) can be written as a composition of trans-
formations like this one x 7→ Ba(x) = a1/2xa1/2 for suitable a ∈ P, by using again Binet’s theorem,
we have that det(a1/2xa1/2) = det(a) det(x), so

β(Ba(x)) = β(a1/2xa1/2) = log(det(a1/2xa1/2)) = log det(a) + log det(x), (63)

i.e.
β(Ba(x)) = β(a) + β(x), (64)

which shows that under a change of background, the brightness of x with respect to a standard
color c (viewed w.r.t the same background) is modified by an additive constant which depends
only on the change of background, and not on the color x.

The law (64), to our knowledge, has not yet been validated by psycho-physical experiments.
This shows another example of how psycho-physics and applied mathematics must be intertwined
in order to study color properties.

7 Conclusions

This first half of a two-part paper deals with the space of perceived colors P. After Schrödinger’s
1920 work on theoretical colorimetry, there have been only very few attempts to investigate the
structure of P. Here we have decided to put our attention on the particularly noticeable work of
H.L. Resnikoff, who added to Schrödinger’s axioms a new one: the hypothesis of homogeneity of
P with respect to a group G of suitable linear transformations.

By using standard, yet very refined, methods from differential geometry and harmonic analysis,
Resnikoff was able to show that the new axiomatic set implies that P can only have two structures:
one is P1 = R+ × R+ × R+, which is isomorphic to the well-known trichromatic color spaces
commonly used in color science, while the other, P2 = R+ × SL(2,R)/SO(2), is completely new.

A further axiom, the invariance of color metric on P with respect to the action of G, leads to
the selection of a unique Riemannian metric on P1 and P2.

Even if very few scientists payed attention to the realization P2 of the perceived color space,
recent theoretical and psychophysical results tend to indicate that this geometrical structure is
much closer to our color perception that the flat one represented by P1.

The contribution of this first half of the two-part paper is three-fold. First, we wanted to recast
Resnikoff’s work into a more modern colorimetric setting, clarifying many mathematical findings
of Resnikoff’s work to make them more accessible.

Second, we have pointed out that the model loses its mathematical foundation if the transfor-
mations of G are not linear. To verify linearity, we have proposed a psycho-physical test that we
are currently performing. In spite of its simplicity, lengthy and careful calibrations are needed to
obtain precise results. Moreover, we have pointed out a quite subtle issue about the real possibility
to pass from one arbitrary fixed perceived color x ∈ P to any other one y ∈ P with one single
physical change of background. So, the psycho-physical interpretation of Resnikoff’s fifth axiom
is still open to debate.

Finally, what underlined above serves as a firm motivation for the second half of this two-
part of the paper, in which the theory of Jordan algebras will allow us circumventing the explicit
specification of the group G and showing a hidden relationship between color perception and
quantum mechanics in the real setting. In fact, within this framework, color description does
not require the explicit specification of an external group action, instead change of background
illumination appear spontaneously as a consequence of the quantum setting that will be detailed.
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