Linearized min‐max robust model predictive control: Application to the control of a bioprocess - Archive ouverte HAL
Article Dans Une Revue International Journal of Robust and Nonlinear Control Année : 2019

Linearized min‐max robust model predictive control: Application to the control of a bioprocess

Résumé

This work deals with the problem of trajectory tracking for a nonlinear system with unknown but bounded model parameter uncertainties. First, this work focuses on the design of a robust nonlinear model predictive control (RNMPC) law subject to model parameter uncertainties implying solving a min-max optimization problem. Secondly, a new approach is proposed, consisting in relating the min-max problem to a more tractable optimization problem based on the use of linearization techniques, to ensure a good trade-off between tracking accuracy and computation time. The developed strategy is applied in simulation to a simplified macroscopic continuous photobioreactor model and is compared to the RNMPC and nonlinear model predictive controllers. Its efficiency and its robustness against parameter uncertainties and/or perturbations are illustrated through numerical results.
Fichier principal
Vignette du fichier
hal-02334153.pdf (766.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02334153 , version 1 (12-03-2020)

Identifiants

Citer

Seif Eddine Benattia, Sihem Tebbani, Didier Dumur. Linearized min‐max robust model predictive control: Application to the control of a bioprocess. International Journal of Robust and Nonlinear Control, 2019, ⟨10.1002/rnc.4754⟩. ⟨hal-02334153⟩
114 Consultations
388 Téléchargements

Altmetric

Partager

More