Real-time prediction of severe influenza epidemics using Extreme Value Statistics - Archive ouverte HAL
Article Dans Une Revue Journal of the Royal Statistical Society: Series C Applied Statistics Année : 2021

Real-time prediction of severe influenza epidemics using Extreme Value Statistics

Résumé

Each year, seasonal influenza epidemics cause hundreds of thousands of deaths worldwide and put high loads on health care systems. A main concern for resource planning is the risk of exceptionally severe epidemics. Taking advantage of the weekly influenza case reporting in France, we use recent results on multivariate GP models in Extreme Value Statistics to develop methods for real-time prediction of the risk that an ongoing epidemic will be exceptionally severe and for real-time detection of anomalous epidemics. Quality of predictions is assessed on observed and simulated data.
Fichier principal
Vignette du fichier
predictepidemic26082020 (1).pdf (496.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02332898 , version 1 (25-10-2019)
hal-02332898 , version 2 (28-08-2020)

Identifiants

Citer

Maud Thomas, Holger Rootzén. Real-time prediction of severe influenza epidemics using Extreme Value Statistics. Journal of the Royal Statistical Society: Series C Applied Statistics, 2021, 71 (2), pp.376-394. ⟨10.1111/rssc.12537⟩. ⟨hal-02332898v2⟩
119 Consultations
72 Téléchargements

Altmetric

Partager

More