N
N

N

HAL

open science

Real-time prediction of severe influenza epidemics using
Extreme Value Statistics

Maud Thomas, Holger Rootzén

» To cite this version:

Maud Thomas, Holger Rootzén. Real-time prediction of severe influenza epidemics using Extreme
Value Statistics. Journal of the Royal Statistical Society: Series C Applied Statistics, 2021.

02332898v2

HAL Id: hal-02332898
https://hal.science/hal-02332898v2
Submitted on 28 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-02332898v2
https://hal.archives-ouvertes.fr

Real-time prediction of severe influenza epidemics
using Extreme Value Statistics

Maud Thomas
Sorbonne Université, CNRS, LPSM, 4 place Jussieu, F-75005 Paris, France,
maud.thomas@sorbonne-universite.fr
and
Holger Rootzén
Mathematical Sciences, Chalmers University and University of Gothenburg,
Gothenburg, Sweden

Summary: FEach year, seasonal influenza epidemics cause hundreds of thousands of
deaths worldwide and put high loads on health care systems. A main concern for resource
planning is the risk of exceptionally severe epidemics. Taking advantage of the weekly
influenza case reporting in France, we use recent results on multivariate GP models in
Extreme Value Statistics to develop methods for real-time prediction of the risk that an
ongoing epidemic will be exceptionally severe and for real-time detection of anomalous
epidemics. Quality of predictions is assessed on observed and simulated data.
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1 Introduction

Every year, seasonal influenza epidemics cause 250,000-500,000 deaths worldwide [Ram-
baut et al., 2008] and put high strain on public health care systems in a short time frame,
due essentially to increased doctor visits, and overcrowded emergency departments and
intensive care units. Predicting the likelihood of an exceptionally severe epidemic in
the future is of paramount importance for health resource planning [Bresee and Hayden,
2013, Khan and Lurie, 2014]. The three following questions are thus of central interest
to public health policy makers.

(Q1) estimation of risks of occurrence of a very severe epidemic during the following
years,

(Q2) real-time prediction of the risk that an ongoing epidemic will be exceptionally severe,
and

(Q3) real-time detection of unusual, thus potentially dangerous, epidemics.

In France, countrywide data on seasonal influenza morbidity have been available since
1985 (see Figure 1 below). The Sentinelles network monitors cases of Influenza-like Illness
(ILI) defined by the presence of fever in excess of 39°C, respiratory symptoms, and muscle
pains [Réseau Sentinelles, 2019]. Though only a fraction of the ILI reported visits are in
fact caused by influenza, their total number reflects the burden on the health care system.

Figure 1 suggests that influenza epidemics, or at least a proportion of them, may be
conceptualised as extreme episodes that occur within the ILI time series. This led us
to lean on Extreme Value Statistics (EVS) to address the above questions. EVS have
been developed to handle extreme events, such as extreme floods, heat waves or episodes
with huge financial losses [e.g. Katz et al., 2002, Embrechts et al., 1997]. EVS allow for
prediction of risks of episodes outside of the observed range.

Question (Q1) may be answered by standard and well established EVS methods. For
instance, they were applied by Chen et al. [2015] to avian influenza, and by Thomas et al.
[2016] to influenza mortality, and emergency department visits.

Previous approaches to Question (Q2) include high dimensional times series prediction
[Davis et al., 2016] and the method of analogues [Réseau Sentinelles, 2019]. The US Center
for Disease Control initiated a data challenge to predict the 2013-2014 US influenza
epidemic. Their conclusion was “Forecasting has become technically feasible, but further
efforts are needed to improve forecast accuracy so that policy makers can reliably use
these predictions” [Biggerstaff et al., 2016]. Building on recently developed EVS results
and methods based on multivariate Generalized Pareto (GP) distributions [Rootzén et al.,
2018, Kiriliouk et al., 2019], we extend the toolbox of available techniques and develop
methods to tackle Question (Q2).

Question (Q3) is an anomaly detection problem. Recent publications have used EVS
in this context [Guillou et al., 2014, Thomas et al., 2017, Goix, 2016, Chiapino et al.,
2019]. In the present paper, the multivariate GP models estimated in the course of solving
Question (Q2) are used to detect anomalous epidemics.

For predictions to be useful in practice, it is necessary to have an understanding of
their reliability. Methods for evaluating the quality of prediction of extremes do not seem
available in the literature. Here, we describe a strategy that uses standardized Brier
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scores, Precision-Recall curves and Average Precision scores [Steyerberg et al., 2010,
Brownlee, 2020, Saito and Rehmsmeier, 2015].

Section 2 presents the Sentinelles network data and the definition of epidemics. Sec-
tion 3 describes the methods and in particular the multivariate GP distributions. In
Section 4 the EVS methods are applied to the Sentinelles ILI data and Section 5 develops
the strategy for assessing the accuracy of the real-time prediction of extremes. Finally,
Section 6 contains the conclusion.

2 The Sentinelles network data

The French nationwide Sentinelles network consists of approximately 1,500 general prac-
titioners in France who participate on a voluntary basis in the ILI surveillance, and report
new cases of ILI observed in their practice. Based on these data, nationwide weekly ILI
incidence rates—i.e. numbers of new cases in France per week per 100,000 individuals—
are estimated. Epidemics are identified using the Serfling method [Serfling, 1963]. It
consists in fitting a cyclic regression model to the weekly ILI rates and setting the start
of the epidemic at the first of the first two consecutive weeks during which the ILI inci-
dence rates exceed the upper bound of the 90% prediction interval [for further details see
Réseau Sentinelles, 2019].

Weekly ILI incidence rates from January 1985 to February 2019 were downloaded for
analysis. Figure 1 shows the time series of weekly ILI incidence rates, which includes 35
epidemics. The epidemic with the highest peak corresponds to the 1989-epidemic, with a
value of 1,793. The lowest peak was observed in 2014, with a value of 325. The durations
of the Serfling epidemics range from 5 to 16 weeks, in 1991 and 2010, respectively.

In this study, the 1985-2018 data were used for estimation and the 2019 data were
kept as a test sample. Since we were interested in very high ILI incidence rates and
relied on EVS methods, we focused on the most active part of the epidemics. The
Serfling method was thus adapted as follows. The start of the epidemic was set at the
first of the first two consecutive weeks during which the ILI incidence rates exceeded
a given constant threshold. The end was set at the end of the Serfling epidemic. The
threshold was chosen as the 0.88-quantile (=272) of the 1985-2018 data to synchronise
the peaks of the epidemics as much as possible, see Figure 2. This definition detected
34 epidemics between 1985 and 2018, and was thus in accordance with the Sentinelles
network. The durations of the 34 epidemics ranged from 3 to 12 weeks in 2014 and
1985/2010, respectively.

The size of an epidemic was defined as the sum of the weekly ILI incidence rates from
the start to the end of the epidemic. The smallest epidemic size was 847 in 2014 and the
largest was 8,062 in 19809.

The size of an influenza epidemic depends on multiple factors including immunity and
vaccination prevalence in the population. Some of these factors may likely be impacted by
the sizes of past epidemics. Nevertheless, as there is little indication that this translates
into statistical dependence between epidemics—shown by the correlation and distance
correlation plots in the Supplementary Material (Section 1)—we thus assumed that the
ILI incidence rates of different epidemics were mutually independent.
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Figure 1: Weekly ILI incidence rates in metropolitan France from January 1985 to Febru-
ary 2019. Arrows indicate epidemics with the highest and the lowest peaks.
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Figure 2: a) Weekly ILI incidence rates for epidemics identified with the Serfling method,
and b) Weekly ILI incidence rates for epidemics obtained from the definition in this paper.



3 Methods: EVS modelling

The main interest of EVS methods is to allow prediction outside of the range of the
observations. In this section, we describe the EVS tools required to answer the questions
raised in this paper.

Section 3.1 presents the univariate Peaks over Thresholds (PoT) method which is
used for Question(Q1). Our approach to Question (Q2) is described in Section 3.2: it is
based on the multivariate PoT method, dwelling on recent results on multivariate EVS
models [Rootzén et al., 2018, Kiriliouk et al., 2019]. Section 3.3 deals with Question (Q3)
and combines a general framework for anomaly detection with Generalized Pareto (GP)
modelling.

3.1 Univariate PoT method

The one-dimensional PoT method, introduced in the hydrological literature by Smith
[1984] consists in selecting a suitably high threshold u and defining excesses above u as
the differences between the observations and u. Under general conditions, the conditional
distribution of the excesses, given that they are positive, is asymptotically as © — oo a
GP distribution with cumulative distribution function (cdf)

1—(1+22)"7 ify£0,2>0
H(x) = 0 (1)
1 —exp(—%) ify=0,z>0.

Here o > 0 is a scale parameter, and v € R is a shape parameter. For a € R, (a); = a if
a > 0 and 0 if a < 0. The parametrisation is chosen so that the cdf for v = 0 is the limit
as v — 0 of the cdf with non-zero v. A useful account of this method is given in [Coles,
2001].

Assuming the observations are independent and identically distributed with common
cdf F', the parameters of the cdf (1) are estimated from the observed excesses. For y > u,
F(y) is estimated, by

Fly) =1-pu(1 = H(y — u)),
where H is the GP cdf (1) with parameters replaced by their estimated values, and p, is
the empirical frequency of observations which exceed the threshold u [Coles, 2001].

The level that the maximum of n observations will exceed with probability 1 — a is
estimated by the a-th quantile g, of F(y)". For example, if v = 0, H is an exponential
distribution and

Jo = u+ 0{log P — log(1 — a'/™)}, (2)

for o such that p, > 1 — o'/".

3.2 Multivariate PoT method

Our approach to real-time prediction is to predict characteristics of interest of an ongoing
epidemic, conditionally on the latest observed ILI incidence rates. Let Y = (Y7,Y5,Y3)
be a random vector where Y; is next to last and Y5 last observed ILI incidence rates



and Y3 is a characteristic of interest. For prediction, we need to specify the multivariate
distribution of Y.

The multivariate PoT method was introduced by [Michel, 2009, Brodin and Rootzén,
2009]. A suitably high threshold is chosen for each component of Y. Excess vectors
are defined as the component-wise differences between observations and thresholds and
considered as positive if at least one of the components exceed its threshold. Under
general conditions, the joint distribution of the positive excess vectors is asymptotically a
multivariate GP distribution as the thresholds tend to co. For the sake of completeness,
we briefly recall the definitions and properties of multivariate GP distributions that will
be needed in this paper [for further details, see Rootzén et al., 2018, Kiriliouk et al.,
2019].

Unlike in the univariate case, the family of multivariate GP distributions cannot be
described as a parametric family. Rootzén et al. [2018] have developed four representa-
tions of multivariate GP distributions for which closed formulas of densities are available.
In this paper, we use the U-representation since it presents nicer properties across the
dimension, which are useful for prediction. Moreover, at the price of standardization, the
marginals of the distributions can be assumed to be standard exponential distributions
[see Section 3 in Kiriliouk et al., 2019].

For later use, we describe the U-representation in dimension 3. Let U = (Uy, Us, Us)
be a 3-dimensional random vector such that E[e™*V] < oo, where max U = max{U;, U,, U3},
and let fy be the probability density function of U. For i = 1,2,3, let f; and F; denote
the density and distribution functions of U;, respectively. The vector U or its distribution
is referred to as the generator.

According to Equation (3.4) in [Kiriliouk et al., 2019], the density function hy of the
3-dimensional GP distribution with standard exponential margins generated by U is

o) = =0 / fo(@ + logt)dt, 3)

emax U

where @ = (11, 19,23) and x + logt = (z1 + logt, x5 + logt, x5 4+ logt). The indicator
function 1(,40y equals one if at least one of the components of @ is positive, and is zero
otherwise. Different choices of distributions for U yield different GP models.

Question (Q2) was formulated as the conditional prediction that Y3 will exceed some
level £ given Y] and Y;. Assuming that the corresponding excess vector X = (X7, Xo, X3)
is positive and follows a multivariate GP distribution with generator U, then

I Nagoy Jy° fula + log t)dtdas
frO::—oo Lizz0y fooo fu(x + logt)didrs

P[Xg Z €|X2 = Z’Q,Xl = 271] = (4)

Formulas for general U distributions are given in the Supplementary Material (Propo-
sition 1, Section 3).

3.3 Anomaly detection

Question (Q3) belongs to the field of anomaly detection. In the present context, a natural
approach is to use the estimated GP model from Section 3.2 to detect epidemics that
exhibit a significantly different pattern from the data used to fit the model. A statistical



test for anomalous epidemics may be based on the GP negative log-likelihood, with a
very large value suggesting that the new observation might be anomalous. The quantiles
of the GP negative log-likelihood distribution were estimated by simulation in order to
define the decision region of the test [e.g. Section 2 of Root et al., 2015]. However, it
must be stressed that “anomalous” has to be understood with respect to the fitted GP
model.

4 Results: Prediction of very high ILI loads on the
health care system

In this section, the methods described in Section 3 are applied to the Sentinelles ILI data.
Recall that the 1985-2018 data were used for estimation and the 2019 data were kept as
a test sample.

For each epidemic, we shall refer to the first week of the epidemic as Week 1, the
second week as Week 2 and so on until the end of the epidemic. For j = 1,2,3 and
k =1985,...,2019, we let YJ’“ denote the ILI incidence rate of Week j in year k, and S*
denote the size of the epidemic of year k. We omit the index k£ when we refer to a generic
epidemic.

To address Questions (Q1), (Q2) and (Q3), we focus on predictions for the Week 3
ILI incidence rate Y3 and the epidemic size S.

4.1 Question (Q1): Risk of very high ILI incidence rates and
epidemic sizes over the following years

The univariate PoT method was applied to the Week 3 ILI incidence rates (Y3'%° ... Y;2018)
and to the epidemic sizes (S'9%5, ... S2018),

As explained in Section 3.1, the first step is to choose a suitably high threshold for each
series of observations. The threshold must be high enough to ensure that the asymptotic
model is valid, but low enough to yield a sufficient number of positive excesses. For the
ILI rates, the threshold u; was chosen as the 0.9-quantile (=339) of the whole 1985-2018
series; for epidemic sizes, the threshold ug as the 0.6-quantile (=4,144) of the series of
epidemic sizes from 1985 to 2018. These thresholds yield 30 positive excesses for Week 3
ILI rates and 14 for epidemic sizes.

One-dimensional GP distributions (Equation (1)) were fitted to the ILI rate and size
positive excesses. Likelihood ratio tests showed that the hypothesis v = 0 was not rejected
(p = 0.64, and p = 0.98 respectively), so that cdf’s were assumed exponential. QQ-plots
and estimates of scale parameters are shown in the Supplementary Material (Section 2,
Figure 2 and Table 1).

Table 1 presents estimates of the levels 7, that during the following year and the
following 10 years the Week 3 ILI incidence rate and the epidemic size will exceed with
given probability 1 — or. These estimates were computed using Equation (2). For Week
3 ILI incidence rates, u; = 339 yielded p,, = 0.88 and for epidemic sizes ug = 4,441
yielded p,, = 0.41. For example, it was estimated that there is a 10% probability that
the epidemic size will exceed 9,385 at least once during the next 10 years.



Table 1: Estimated levels that the Week 3 ILI incidence rate and the epidemic size will
exceed with either probability 10% or 1% during the following year and the following 10
years.

one year one year 10 years 10 years
11—« 10% 1% 10% 1%
Week 3 ILI incidence rates 1,192 2,094 2,076 2,994
Epidemic sizes 6,165 9,452 9,385 12,733

4.2 Question (Q2): Real-time prediction of very high ILI inci-
dence rates and epidemic sizes

In this section, the multivariate PoT method is applied to (Y1985 ... Y?2018) and
(S19%5 .. S2018) where Y* = (Y[, YF YF) and S* = (Y}, Y}, S¥) for k = 1985 ,2018.

The thresholds uy of 339 for the ILI incidence rates Yi, Y5 and Y3 and ug of 4,144
for the epidemic size S were as in the previous section. For both (Y95 .. Y?2018) and
(S1985 .., S%018) there were 32 positive excess vectors as defined in Section 3.2. In order
to meet the assumption of standard exponential marginals, positive excess vectors were
standardized by dividing each component by the corresponding scale parameter estimates
(Table 1, Supplementary Material).

To define a multivariate GP model, the distribution of the generator U = (Uy, Uy, Us)
must be specified. Assuming that the three components Uy, Us, U3 of U were mutually
independent, three families of marginal distributions were considered: Gumbel, reverse
exponential, and reverse Gumbel distributions. The corresponding models were fitted to
the 32 positive excess vectors. Formulas for the densities hy for the three GP models are
given in the Supplementary Material (Section 4).

Table 2 shows that both in terms of AIC and BIC, the best fit was that of the
GP family with Gumbel generator, for both Y and S. According to Equation (3), the
corresponding density is

fO 1az texl ﬁl) aze (te i i)*aidt

S (1= T et ) ae

with a1, az,a3 > 1 and (31, fa, B3 € R (for further details see Supplementary Material,
Section 4 and [Kiriliouk et al., 2019]). In the sequel, we refer to this GP model as
the Gumbel model. The estimated parameters of the Gumbel model are given in the
Supplementary Material (Table 2). More parsimonious sub-models were considered and
consistently rejected on the basis of AIC, BIC and log-likelihood ratio tests (Supplemen-
tary Material, Table 3).

The estimated model was used to provide estimates of the probability that Y3 and S
will exceed a specified level given that Y; and Y, have been observed. Since Equation (4)
is valid for positive excess vectors only, two situations must be considered

hU (X)

: (5)

i) If at least one of Y; or Y; exceeds its threshold, Equation (4) is valid whatever Yj.



Table 2: AIC and BIC of GP models for Week 3 ILI incidence rates and for epidemic
sizes

Generator ‘ Gumbel Reverse exponential Reverse Gumbel
AIC 194 2189 208
BIC 202 2196 215

a) Week 3 ILI incidence rates

Generator ‘ Gumbel Reverse exponential Reverse Gumbel
AIC 227 2240 268

BIC 234 2248 275
b) Epidemic sizes

ii) If neither Y7 nor Y5 exceeds its threshold, then whether the excess vector will be
positive or not is unknown. In this case, the right-hand side of Equation (4) must
be multiplied by the probability that Y3 (or S) exceeds its threshold given that Y)
and Y5 do not exceed theirs. The corresponding empirical probability was 0.33 for
both Y5 and S.

The procedure is illustrated in Table 3 which presents predictions for the 2019 epi-
demic. The largest observed Week 3 ILI incidence rate between 1985 and 2018 was
1,729. The table shows the estimated probabilities that the 2019 Week 3 ILI inci-
dence rate exceeds a fraction x of the 1985-2018 maximum ILI incidence rate 1,729 for
k = 0.5,0.75,0.95, 1. Estimates for epidemic sizes are presented similarly with a largest
observed epidemic size of 7,241. The prediction probabilities, even for the lowest level
were quite small, and in effect this level was not exceeded in 2019. For the 2019 epidemic
the Weeks 1, 2 and 3 ILI incidence rates were 336, 540, and 500, respectively, and the
epidemic size was 1,192.

Table 3: Prediction probabilities for the 2019 epidemic of exceedances of levels 1,729x x
for Week 3 ILI incidence rates and 7,241« for epidemic sizes.

Week 3 ILI incidence rates Epidemic sizes
K 0.5 075 0.95 1 0.5 0.75 0.95 1
Level 864 1,297 1,643 1,729 | 4,031 6,046 7,659 8,062
Probability | 0.185 0.012 0.001 0.0007 | 0.026 0.008 0.003 0.002



4.3 Question (Q3): Real-time prediction of anomalous epi-
demics

The quantiles of the GP negative log-likelihood were obtained as follows: the esti-
mated Gumbel model was used to generate 1,500 datasets, each consisting of 33 three-
dimensional positive excess vectors. For each simulated dataset, a Gumbel model was
fitted to the 32 first vectors and the estimated negative log-likelihood was computed
at the 33rd vector. The significance levels obtained as the empirical quantiles of these
negative log-likelihoods are shown in Table 4.

Table 4: Quantiles of the estimated negative log-likelihood.

Significance level ‘ 10% 5% 1% 0.1%

Quantile | 472 5.60 7.79 14.50
A
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Figure 3: Leave-one-out negative Gumbel log-likelihoods for the ILI incidence rates
of Weeks 1-3 of the 33 epidemics with positive excesss vectors observed between 1985
and 2019 (open circles). Swine flu pandemic (closed circle), simulated point with very
large third component (closed square), and simulated anomalous point (closed triangle).
Dashed and dotted blue lines are quantiles for the 1% and 0.1% significance levels.

To illustrate the meaning of “anomalous”, we simulated two extra positive excess
vectors: (i) a positive excess vector with a very high third component equal to the
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0.99-quantile of the third component of simulated positive excess vectors and (ii) an
anomalous positive excess vector obtained from (i) by multiplying the first and the third
components by 1.5 and the second by 0.5. Figure 3 shows that only the anomalous point
(i) exceeds the 0.999-quantile. Interestingly, the 2009-10 swine flu pandemic was not
unusual compared to the others epidemics.

5 Assessment of real-time predictions

This section presents a strategy for assessing real-time prediction of exceedances of very
high levels, and its application to the 1985-2019 ILI data.

5.1 Methods

There is a substantial literature on assessment of forecasting [see Lerch et al., 2017, and
references therein|. To our knowledge, apart from [Renard et al., 2013], the literature
provides metrics aimed at comparing predictions with observations. However, standard
assessment metrics are not appropriate when the frequency of exceedances in the data is
small.

To overcome this drawback, we use (i) standardized Brier scores; (ii) Precision-Recall
Curves; and (iii) Average Precision scores, together with simulations from estimated
models.

(i) The standardized Brier score is defined as

L3N (B — o)
p(1—p)

1- ;
where N is the number of predictions, p; is the prediction probability of exceedance,
0; = 1 if an exceedance was observed, and 0 otherwise, and p = %sz\; 0;, See e.g.
[Steyerberg et al., 2010]. The score is bounded by 1, with larger values indicating better
prediction. Using the predictor p; = p gives the value 0.

(ii) A question such as “will the Week 3 ILI incidence rate or the epidemic size be
higher than a given high level, say the largest rate or size observed up to now?” may
be formulated as a binary classification problem. The data are divided into two classes:
Positives (exceedances) and Negatives (no exceedances). The strategy consists first in
computing p; and then in comparing this estimate to some cut-off probability value p.. If
D; > pe then the observation is assigned to the Positives class, and to the Negatives class
otherwise. The “true positives” (“false positives”) correspond to the observations that
are correctly (incorrectly) assigned to the Positives class, and the “true negatives” (“false
negatives”) to the observations that are correctly (incorrectly) assigned to the Negatives
class.

Common methods to assess the performance of binary classifiers include true positive
and true negative rates, and ROC (Receiver Operating Characteristics) curves. These
methods, however, are uninformative when the classes are severely imbalanced, which is
the case when predicting very high level exceedances which are rare by nature. In this
context, Saito and Rehmsmeier [2015] have argued that Precision-Recall curves are more
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informative. These curves display the values of

true positives

Precision =
(pc) true positives + false positives

against the values of

true positives

Recall(p.) = — ——
(pc) true positives + false negatives

as the cut-off probability p. varies from 0 to 1. Precision quantifies the number of correct
positive predictions out all positive predictions made; and Recall quantifies the number
of correct positive predictions out of all positive predictions that could have been made.
Both focus on the Positives class (the minority class) and are unconcerned with the Neg-
atives (the majority class). The Precision-Recall curve of a skillful model bows towards
the point with coordinates (1, 1). The curve of a no-skill classifier will be a horizontal line
on the plot with a y-coordinate proportional to the number of Positives in the dataset.
For a balanced dataset this will be 0.5 [Brownlee, 2020].

(iii) The Average Precision score is an approximation to the area under the Precision-
Recall curve [Su et al., 2015]. A perfect prediction model would have an Average Precision
score equal to 1, and the closer the score is to 1, the better the prediction performance
of the model.

5.2 Quality of real-time predictions

Quality of real-time predictions was assessed on both the Sentinelles 1985-2019 series
and on simulated data. For purpose of comparison, prediction probabilities were also
estimated using a standard logistic regression model, with Y] and Y5 as covariates and
response variable coded as 1 in the presence of an exceedance and 0 otherwise. Levels
used in this section are those defined in Table 3 (Section 4.2).

Assessment on the 1985-2019 ILI data A leave-one-out procedure was performed
on the 1985-2019 epidemics yielding 35 estimates of prediction probabilities for the two
lower levels (k = 0.5,0.75). Prediction probabilities for the two higher levels could not
be estimated since there was only one exceedance for k = 0.95 and none for k = 1.

Figure 4 shows the prediction probabilities of level exceedances stratified according
to whether an exceedance was observed or not. Contrary to GP prediction, logistic
regression was never able to discriminate between the two outcomes. Table 5 presents
the corresponding standardized Brier scores and confirms that GP prediction performs
much better than the logistic regression.

Precision-Recall curves and Average Precision scores are not shown since they were
uninformative due to insufficient data.
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Figure 4: Prediction probabilities of level exceedances for the 1985-2019 ILI incidence
rates obtained from the Gumbel model and from logistic regression using a leave-one-out
procedure. Outcome is 0 if there was no exceedance and 1 otherwise. a) Week 3 ILI
incidence rates, Level = 816 (k = 0.5) b) Week 3 ILI incidence rates, Level = 1,224
(k = 0.75) ¢) Epidemic sizes, Level = 4,031 (x = 0.5) d) Epidemic sizes, Level = 6,046

(k =0.75)

Table 5: Standardized Brier scores derived from a leave-one-out procedure on observed
data for the GP prediction and the logistic regression for predictions of exceedances of
1,729x k for Week 3 ILI incidence rates and 7,241 x k for epidemic sizes.

Week 3 ILI incidence rates | Epidemic sizes

K 0.5 0.75 0.5 0.75

Level 816 1,224 4,031 6,046

GP prediction | 0.33 0.69 0.44 0.46
Logistic 0.06 0.02 0.005 0.002

Assessment on simulated data 1,500 datasets consisting of 33 three-dimensional
vectors were simulated from the estimated Gumbel models for Week 3 ILI incidence rates
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and epidemic sizes, respectively. The simulations were carried out following Section 7 of
[Rootzén et al., 2018]. A Gumbel model was fitted to the first 32 vectors of each dataset
and the estimated model was then used to predict the third component of the 33rd vector,
conditionally on the first two components.

Figure 5 shows boxplots of the prediction probabilities for the GP prediction for Week
3 ILI incidence rates and epidemic sizes for the four levels (k = 0.5,0.75,0.95,1). The
widths of the boxes indicate that the performance of the GP prediction is better for
incidence rates than for epidemic sizes.

The boxplots for predictions obtained from the logistic regression are shown in Figure 6
for the two lower levels. Predictions could not be made for the higher levels since, for
these levels, there were too few exceedances in the simulated data to allow estimation of
the parameters. The quality of the GP prediction is much better than that of the logistic
regression.

Standardized Brier scores and Average Precision scores for predictions with GP and
logistic predictions are presented in Table 6, and Precision-Recall curves are shown in
Figure 7.

For the simulated data, the true parameters for the Gumbel model are known. The
prediction probabilities obtained from the true model give results similar to the fitted
Gumbel model (Figure 3, Supplementary Material).

Table 6: Standardized Brier scores and Average Precision scores for the GP prediction,
the logistic regression and the true model for predictions of exceedances of 1,729xx for
Week 3 ILI incidence rates and 7,241 xx for epidemic sizes for the simulated data.

K 0.5 0.75 0.95 1

Level 816 1,224 1,551 1,632

GP prediction | 0.72 0.75 0.80 0.84
Logistic 0.19 -0.18 - -

GP prediction | 0.92 091 0.93 0.96
Logistic 0.72 0.51 - -

a) Week 3 ILI incidence rates

Brier scores

Average Precision scores

K 0.5 0.75 0.95 1

Level 3,620 5431 6,879 7,241

Brier scores GP prediction | 0.40 0.51 047 044
Logistic -0.03  -0.50 - -

Average Precision scores GP prediction | 0.64 0.71  0.64 0.60
Logistic 0.52 0.40 - -

b) Epidemic sizes
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Figure 5: Boxplots of prediction probabilities of level exceedances for simulated data
obtained from the fitted Gumbel model for a) Week 3 ILI incidence rates and b) epidemic
sizes. Outcome is equal to 0 if there was no exceedance and 1 otherwise.
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Figure 6: Boxplots of prediction probabilities of level exceedances for simulated data
obtained from the logistic regression for a) Week 3 ILI incidence rates and b) epidemic
sizes. Outcome is equal to 0 if there was no exceedance and 1 otherwise.
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epidemic sizes for the Gumbel model (plain blue line), for the logistic regression (dashed
red line).
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6 Conclusion

Using standard univariate EVS, we derived estimates of the risk of very high ILI incidence
rates and of epidemic sizes for the following years. Such estimates provide input for long
term resource planning, standard in areas such as environmental science, but have so far
been little used in epidemiology and health care planning.

The main contribution of this paper was to develop methods for real-time prediction
of short term risks as early as the start of an ongoing epidemic. These methods build
on recent results based on multivariate GP distributions [Rootzén et al., 2018, Kiriliouk
et al., 2019].

The choice of 3-dimensional GP models and the assumption of standard exponential
margins were imposed by the small number of available data. However, these restrictions
may be relaxed in other contexts if enough data is available.

To a large extent, assessment of predictions of extreme events remains an open is-
sue. Here, our predictions were assessed using standardized Brier scores, Precision-Recall
curves and Average Precision scores [Steyerberg et al., 2010, Brownlee, 2020, Saito and
Rehmsmeier, 2015].

Acknowledgment: We thank Tom Britton, Anna Kiriliouk, Andreas Pettersson,
Thordis Torainsdottir and Jenny Wadsworth for help and comments.

R codes: The data and the R codes are publicly available at github.com/
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