Evaporative electron cooling in asymmetric double barrier semiconductor heterostructures
Résumé
Rapid progress in high-speed, densely packed electronic/photonic devices has brought unprecedented benefits to our society. However, this technology trend has in reverse led to a tremendous increase in heat dissipation, which degrades device performance and lifetimes. The scientific and technological challenge henceforth lies in efficient cooling of such high-performance devices. Here, we report on evaporative electron cooling in asymmetric Aluminum Gallium Arsenide/Gallium Arsenide (AlGaAs/GaAs) double barrier heterostructures. Electron temperature, T e , in the quantum well (QW) and that in the electrodes are determined from photoluminescence measurements. At 300 K, T e in the QW is gradually decreased down to 250 K as the bias voltage is increased up to the maximum resonant tunneling condition, whereas T e in the electrode remains unchanged. This behavior is explained in term of the evaporative cooling process and is quantitatively described by the quantum transport theory.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...