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ARTICLE

Evaporative electron cooling in asymmetric double
barrier semiconductor heterostructures
Aymen Yangui 1,2,4, Marc Bescond1,2,4, Tifei Yan1, Naomi Nagai1 & Kazuhiko Hirakawa1,2,3*

Rapid progress in high-speed, densely packed electronic/photonic devices has brought

unprecedented benefits to our society. However, this technology trend has in reverse led to a

tremendous increase in heat dissipation, which degrades device performance and lifetimes.

The scientific and technological challenge henceforth lies in efficient cooling of such high-

performance devices. Here, we report on evaporative electron cooling in asymmetric Alu-

minum Gallium Arsenide/Gallium Arsenide (AlGaAs/GaAs) double barrier heterostructures.

Electron temperature, Te, in the quantum well (QW) and that in the electrodes are deter-

mined from photoluminescence measurements. At 300 K, Te in the QW is gradually

decreased down to 250 K as the bias voltage is increased up to the maximum resonant

tunneling condition, whereas Te in the electrode remains unchanged. This behavior is

explained in term of the evaporative cooling process and is quantitatively described by the

quantum transport theory.
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Nanoscale miniaturization of semiconductor devices has
enabled ultrahigh-density integration and ultrafast
operation of transistors and optoelectronic devices. A

significant and sustained upward trend of nanoscale miniatur-
ization is expected for the coming years owing to tremendous
growth of the so-called “new communication and information
technologies”. However, this downscaling of devices has brought
technological issues. High electric fields in such nanoscale devices
generate hot carriers, which transfer their kinetic energies to the
lattice, leading to the formation of hot spots1–3. The on-chip
power density now exceeds 100W cm−2 2,4 leading to lattice
temperature above 400 K5. These self-heating effects result in
significant reduction in performances6 and lifetimes of the devi-
ces. Moreover, the refrigeration of the entire systems is extremely
power consuming3,7,8. Accordingly, efficient integrated cooling
solutions are listed in the International Roadmap for Devices and
Systems as the top five long-term key challenges to address9. The
engineering of efficient cooling is then one of the major scientific,
technological, and environmental tasks in a context of energy
resource shortage10,11.

The most commonly used solid-state refrigeration is based on
the thermoelectric Peltier effect12. In the thermoelectric regime,
electrons frequently experience scattering, leading to the degra-
dation in the thermoelectric power factor S2σ, where S and σ are
the Seebeck coefficient and the electrical conductivity, respec-
tively. Furthermore, the materials used to obtain efficient Peltier
effect such as BiTe are not compatible with the standard semi-
conductor fabrication processes.

Another interesting mechanism for solid-state refrigeration is
the thermionic cooling13. Electrons thermionically emitted from
the cathode transfer their kinetic energies to the anode and give
rise to refrigeration in the cathode14. In 1990’s, the idea of
thermionic cooling revived and semiconductor heterostructure
refrigerators based on this concept were investigated15–20. Lattice
cooling by as much as 1 to 3 K was observed at 300 K by using a
single or multiple barrier structures21–25.

An alternative approach to reduce the hotspot effect is to
directly cool down electrons before electrons transfer their kinetic
energy to the lattice. The aim of the present work is to demon-
strate that a significant electron cooling as much as 50 K is pos-
sible in a semiconductor heterostructure operating at room
temperature. The studied Aluminum Gallium Arsenide/Gallium
Arsenide (AlGaAs/GaAs) asymmetric double-barrier hetero-
structure, which combines resonant tunneling and thermionic
emission, was originally proposed by Chao et al. as a lattice
cooler26. Here, we demonstrate that this heterostructure is also
very efficient for cooling the electron system in the quantum well
(QW). The electron temperature, Te, in the QW as well as Te in
the electrodes are determined from photoluminescence (PL)
measurements. At 300 K, Te in the QW is remarkably reduced by
as much as 50 K as the bias voltage is increased up to the max-
imum resonant tunneling condition. This behavior is qualitatively
explained in terms of the evaporative cooling process, which is
well-known in the field of the cold atom physics27. In this work,
we have implemented the concept of the evaporative cooling in a
solid-state system, i.e., the semiconductor heterostructures, and
observed a significant electron cooling as much as 50 K at 300 K.
The observed cooling behavior is quantitatively confirmed by
quantum transport calculations that self-consistently couples the
non-equilibrium Green’s function (NEGF) formalism for elec-
trons with the heat equation (see Supplementary Methods).

Results
Asymmetric double-barrier heterostructures. The samples used
in the present work were grown by molecular beam epitaxy and

prepared by growing successively on an n-type GaAs substrate,
a 300-nm-thick n-GaAs emitter layer (Si: 1 × 1017 cm−3), a 5-nm-
thick undoped GaAs layer, an undoped 15-nm-thick Al0.4Ga0.6As
barrier (we call this barrier “the emitter barrier” hereafter), an
undoped 4-nm-thick GaAs QW, an undoped 100-nm-thick
Al0.25GaAs0.75As barrier (we call this barrier “the collector bar-
rier” hereafter), and a 200-nm-thick n-GaAs collector layer
(Si: 1 × 1017 cm−3). We used a rather thick emitter barrier
(15 nm) to quantum-mechanically decouple the electronic states
in the QW from those in the emitter electrode and separate the
photoluminescence (PL) in the QW from that in the electrodes.
Thinner barrier would also degrade the heat insulation between
the electrons in the QW and those of the emitter, leading to a
reduction of the electron cooling. The wafer was then patterned
into 200 × 200 μm2 mesas by photolithography. 70/50-nm-thick
AuGeNi/Au contacts were deposited on the front and back sides
of the mesa. For optical measurements, we made a 50 × 50 μm2

window on the top of each mesa, where we deposited semi-
transparent 5-nm-thick NiCr film to ensure the uniformity of the
applied bias voltage. The wafer was finally annealed at 450 °C in
Ar ambient for 30 s. For more detail, see the Supplementary
Note 1 and the Supplementary Fig. 1.

Figure 1a illustrates the band diagram of the asymmetric
double-barrier heterostructure. A positive voltage is applied to the
collector electrode with respect to the emitter electrode. Electrons
are injected from the emitter electrode into the quantized
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Fig. 1 The asymmetric double-barrier heterostructure for evaporative
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subband in the QW by resonant tunneling through the emitter
barrier. Due to the very thick collector barrier, electrons injected
into the QW cannot tunnel out to the collector electrode; instead,
electrons whose kinetic energy is larger than the height of the
collector barrier are removed by thermionic emission. This effect
leads to the cutoff of the high-energy tail of the distribution
function of electrons in the QW which then thermalized into a
new quasi-equilibrium state at a lower temperature. This is the
so-called evaporative cooling28,29.

Figure 1b schematically illustrates how the non-equilibrium
electron and lattice systems in the QW interact with each other.
The electron system is cooled through “evaporation” over the
collector barrier. The colder electron system in the QW is in close
contact with the warmer lattice system via electron–phonon
interaction. As a result, the electron system is warmed up by the
lattice system through phonon absorption, while the lattice
system in the QW is cooled down by the electron system
(“thermionic cooling”). Furthermore, since the QW is contacted
by the electrode layers, there is a heat flow from the heat bath to
the QW.

Determination of the electron temperature. To characterize the
sample structure, we first measured its current–voltage char-
acteristics. Figure 2a plots the current density, J, measured as a
function of the bias voltage, V, at 300 K. As seen in this figure, the
J–V curve at 300 K is rather featureless and J gradually increases
with increasing V. This J–V curve is perfectly reproduced by the
NEGF quantum transport calculation. To gain more insight to the
resonant tunneling electron injection, we also measured J at 4.2 K
(see Fig. 2b). A kink due to the shut-off of the resonant tunneling
process can be identified near 0.5 V, which is more clearly visible
in the plot of dI/dV. This confirms the resonant tunneling
injection of electrons into the QW. Figure 2c plots the tempera-
ture dependence of J measured at various V. An exponential

decrease in J with decreasing T is observed for T > 100 K, whereas
J becomes almost temperature-independent for T < 50 K, indi-
cating that the current is carried by tunneling. The high-
temperature behavior is dominated by the thermionic emission
process30, whose magnitude is proportional to T2exp(-W/kBT).
Here, W is the activation energy (see Fig. 1a) and kB the Boltz-
mann constant. From the slope of the log(J/T2) vs 1/T plots at
high temperatures, we estimated W (Fig. 2d). W does not depend
on V and stays at around ~90 meV, which is consistent with the
designed band structure.

Let us discuss the electron temperature, Te, in the QW. For this
purpose, we carried out PL measurements at 300 K. The
measurements were performed by using an excitation photon
energy of 2.54 eV. This rather high photon energy is to reduce the
penetration depth of the excitation light into GaAs (it is ~100 nm
at 2.54 eV) and have a higher PL sensitivity in the shallow QW
region. The excitation power was set to be 2 mW and the spot size
was about 10 µm. Figure 3a plots the PL spectra measured at
various V at 300 K. A PL peak is observed at ~1.43 eV, which
results from the emission in the n-GaAs electrodes. A shaper PL
peak is observed at 1.552 eV, together with a shoulder at 1.578 eV.
The peak at 1.552 eV originates from the radiative recombination
of the ground subband electrons in the QW with heavy holes
(HH) and the shoulder at 1.578 eV is due to the electron-light
hole (LH) emission.

Assuming the Maxwell–Boltzmann distribution for electrons,
Te in the QW as well as that in the electrodes were deduced from
the high-energy tail of the PL spectra31–33. In the electrode
regions, we have a three-dimensional density of states and the PL
intensity can be approximately expressed as,

Iel /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hν � Eg
q

exp � hν � Eg
kBTe

� �

; ð1Þ

where Iel is the PL intensity of the electrode emission, hν the
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photon energy, Eg the bandgap of GaAs, and kB is the Boltzmann
constant. As for the PL from the QW, we have constant two-
dimensional densities of states for electrons and holes. Then, we
have

IQW / exp � hν � E0
kBTe

� �

; ð2Þ

where IQW is the PL intensity of the QW region, and E0 the
energy difference between the electron-hole quantized ground
subband. Using Eqs. (1) and (2), we replotted in Fig. 3b, c the PL
intensities for the electrode and the QW, respectively. Figure 3b

plots log½Iel=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hν � Eg
q

� as a function of hν for the electrode

emission. The high-energy exponential thermal tail of the PL is
clearly observed and Te in the electrode is deduced from its slope.
The determined Te is ~305 K and remains almost unchanged
when V is varied, as shown in Fig. 3d (green circles). Concerning
the PL from the QW, we plot logIQW as a function of hν in Fig. 3c

and determine Te from the slope of its high-energy tail. As seen in
the figure, the slope becomes steeper as V is increased, reflecting
the reduction in Te in the QW. In Fig. 3d, the obtained Te for the
QW are plotted by red squares as a function of V. Note that Te in
the QW is reduced from room temperature by as much as 50 K
when V= 0.5 V. For V above 0.5 V, Te in the QW almost
saturates.

As described before, the decrease in Te in the QW results from
evaporation of electrons28,29,34 and can be explained as follows; at
V= 0, electrons in the QW are in the thermal equilibrium with
those in the emitter and collector electrodes. The local net current
vanishes and the electrons in the QW have the same thermal
distribution as those in the electrodes, which are at room
temperature. Applying a positive bias induces a net flow of
electrons from the emitter to the collector. In the QW, the
thermally excited carriers that have an energy higher than
the collector barrier are driven outside the QW toward the
collector. The electrons remaining in the QW are re-thermalized
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within a few tens of femtoseconds to a new quasi-equilibrium
distribution at a lower temperature via electron–electron
and electron–phonon scattering. The increase in V promotes
the current flow, i.e., electron evaporation, until the maximal
resonant tunneling is reached at V= 0.5 V. For V above 0.5 V, the
subband in the QW goes below the conduction band edge in the
emitter and the resonant tunneling injection should be shut off.
However, as shown in Fig. 2b, the measured current does not
decrease but it becomes almost constant. This is probably due to
scattering-assisted injection of electrons from the emitter to the
QW. Figure 3d shows an excellent agreement between experiment
and quantum transport calculations. We note that electrons in the
collector are heated up by the landing of hot electrons that escape
from the QW. However, since the heat released by the hot
electrons are very quickly redistributed and shared among very
many electrons in the collector electrode, the increase in the
electron temperature in the collector is expected to be much
smaller (below 0.1 K). Furthermore, the surface metal electrode
also helps good thermal anchoring of electrons in the collector
electrode.

At this point, we would like to discuss interactions between the
electron and the lattice systems. In polar materials such as GaAs,
interactions between electrons and lattice are mainly mediated by
polar optical (PO) phonons35–37. Electrons injected onto the QW
state are then subject to PO phonon absorption. This transfer
of energy from the lattice to the electron system warms up the
electron system. To see this effect, we plot, in Fig. 3d, Te in the
QW obtained from quantum transport calculations in which
the interaction between the electrons and the PO phonons in the
QW is intentionally suppressed. It shows that the calculated
reduction in Te is significantly enhanced; for instance, Te is 137 K
at V= 0.1 V. For higher voltages (i.e. V superior than 0.5 V), the
calculation of Te cannot be numerically performed, because the
present theoretical model assumes the acoustic phonon scattering
to be elastic and, because of this reason, the quasi-localized state
becomes inaccessible once it goes below the conduction band
edge of the emitter.

Efficiency of lattice cooling. Finally, let us make a comment on
the lattice refrigeration effect. As previously described, phonon
absorption by colder electrons in the QW cools lattice (ther-
mionic cooling). Since the determination of the local lattice
temperature in the QW is very challenging and out of the scope of
the present paper, we want to make a theoretical estimation.
Figure 4a shows the calculated cooling power density per unit
area, JQ, as a function of V. JQ is determined in NEGF from the

spatial derivative of the electronic energy flow and defines the
power transferred from the lattice to the electrons (see Supple-
mentary Methods for more details)38. We see that JQ increases
with V. It goes from 111Wm−2 at 0.1 V to 2.7 kWm−2 at 0.9 V.
However, the total input electrical power density, JV, applied to
the heterostructure also strongly increases. A meaningful criter-
ion is then given by the coefficient of performance, COP≡ JQ/JV,
which is also plotted in Fig. 4a. Interestingly, the COP shows a
maximum at a low bias voltage (COP ∼ 23% for V= 0.1 V) and
continuously decreases with increasing V. This feature results
from the enhancement of the escape rate of electrons from the
QW at high electric fields, hence reducing the interaction with
phonons. Moreover, in this regime, the strong increase in the
current component which directly goes above the collector barrier
also contributes to the COP reduction. Figure 4 emphasizes the
trade-off between a high COP, which is usually obtained near the
equilibrium state, and a large cooling power, which is obtained at
larger V.

Discussion
Despite a good COP value, theory estimates a rather weak lattice
temperature cooling, in the order of a few mK. The reason for
such a small lattice cooling effect is threefold: the first is the
difference in the specific heats of electrons and phonons. Indeed
the specific heat of phonons in GaAs is, at room temperature,
equal to 46 Jmol−1K−1, while the one for electrons is several
orders of magnitude smaller39. The second is the high thermal
conductance of the AlGaAs emitter and collector barriers. Since
the thin QW is sandwiched between the emitter and the collector
electrode layers, heat flow from the electrodes is significant.
Third, we adopted a relatively low doping density in the electrode
to reduce the peak width of the electrode PL (as shown in Fig. 3a).

For more significant lattice cooling, we need to increase the
current density and realize a cooling power density of the order of
103W cm−3 in the QW. This value can be achieved by increasing
the doping density in the emitter electrode and by reducing the
thickness of the emitter barrier. Theoretical investigations
reported in ref. 40 have shown that a structure with a higher
doping level (1018 cm−3) in the emitter and a thinner emitter
barrier (2.4 nm) can achieve a maximum COP above 100% (In
the present cooling device structure, heat is removed from the
QW and transferred to the collector region. Therefore, the COP
estimated only for the QW region can exceed 100%) at V= 0.1 V,
with a cooling power density of 2 × 102W cm−2. We are con-
vinced that fully optimized structures will be able to locally
refrigerate the lattice by a few tens degree celsius under typical
operating conditions.

In this paper, we have investigated both experimentally and
theoretically the cooling properties of AlGaAs/GaAs asymmetric
double-barrier heterostructures. We have shown that electrons in
the QW are refrigerated by the “evaporative cooling” process.
Electron temperatures in the QW and in the electrodes were
determined by PL measurements. We have found that, when
operated at room temperature, Te in the QW decreases down to
250 K with increasing the bias voltage up to the maximum
resonant tunneling condition. The experimental results have been
well explained by quantum transport theory. Furthermore, we
have discussed the interplay between the electron and lattice
cooling in the QW. The lattice system is refrigerated by the
“thermionic cooling” process and its COP is in the order of
5–20%. These results make our heterostructure device promising
for a comprehensive heat management in nanodevices.

Methods
Sample fabrication. A detailed description of the sample fabrication is provided in
the Supplementary Notes 1 and 2 and the Supplementary Fig. 1.
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Electron temperature determination. The determination of electron tempera-
tures from the fit of the high-energy tail of the PL spectra, assuming the
Maxwell–Boltzmann distribution, has been well established and has often been
used particularly for GaAs/AlGaAs heterostructures31–33. However, it is worth
mentioning that the calculation of the electron temperature directly from the slope
of high-energy tail of PL spectra relies on several approximations. Full details of the
approximations used are provided in the Supplementary Note 3.

Quantum transport code. Quantum transport code, including the calculations of
current characteristics, electron temperatures, and coefficients of performance, can
be found in the Supplementary Methods and in ref. 40.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
The source data underlying Figs. 2a–d, 3a–d, and 4 are provided as a Source Data file.

Code availability
The quantum transport code used for the calculations of current characteristics, electron
temperatures and coefficients of performance are available from the corresponding
author upon reasonable request.
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